
ProDOS 8
#1: The GETLN Buffer and a ProDOS Clock Card 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#1: The GETLN Buffer and a ProDOS Clock Card

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note describes the effect of a clock card on the GETLN buffer.

ProDOS automatically supports a ThunderClock™ or compatible clock card when the system
identifies it as being installed. When programming under ProDOS, always consider the impact
of a clock card on the GETLN input buffer ($200 – $2FF). ProDOS can support other clocks
which may also use this space.

When ProDOS calls a clock card, the card deposits an ASCII string in the GETLN input buffer in
the form: 07,04,14,22,46,57. This string translates as the following:

07 = The month, July (01=Jan,...,12=Dec)
04 = The day of the week, Thurs.(00=Sun,...,06=Sat)
14 = The date (00 to 31)
22 = The hour, 10 p.m. (00 to 23)
46 = The minute (00 to 59)
57 = The second (00 to 59)

ProDOS calls the clock card as part of many of its routines. Anything in the first 17 bytes of the
GETLN input buffer is subject to loss if a clock card is installed and is called.

In general, it has been the practice of programmers to use the GETLN input buffer for every
conceivable purpose. Therefore, an application should never store anything there. If your
application has a future need to know about the contents of the $200 – $2FF space, you should
transfer it to some other location to guarantee that it will remain intact, particularly under
ProDOS, where a clock card may regularly be overwriting the first 17 bytes.

The ProDOS 8 Technical Reference Manual contains more information on the clock driver,
including the necessary identification bytes, how the ProDOS driver calls the card, and how you
may replace this routine with your own.

Further Reference
• ProDOS 8 Technical Reference Manual

ProDOS 8
#2: Porting DOS 3.3 Programs to ProDOS and BASIC.SYSTEM 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#2: Porting DOS 3.3 Programs to ProDOS

and BASIC.SYSTEM

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note formerly described the DOSCMD vector of BASIC.SYSTEM.

This Note formerly described the DOSCMD vector of BASIC.SYSTEM, which can be used to let
BASIC.SYSTEM interpret ASCII strings as disk commands in much the same way DOS 3.3 did.
The ProDOS 8 Technical Reference Manual now contains this information in Appendix A.

Further Reference
• ProDOS 8 Technical Reference Manual

ProDOS 8
#3: Device Search, Identification, and Driver Conventions 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#3: Device Search, Identification, and

Driver Conventions

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note formerly described how ProDOS 8 searches for devices and how it deals
with devices which are not Disk II drives.

This Note formerly described how ProDOS 8 searches for devices and how it deals with devices
which are not Disk II drives; this information is now contained in section 6.3 of the ProDOS 8
Technical Reference Manual.

Note: The information on slot mapping on page 113 of the manual and on page 2 of the
former edition of this Technical Note is incorrect. ProDOS itself will mirror
SmartPort devices from slot 5 into slot 2 under certain conditions. Devices should
not be mirrored into slots other than slot 2. For more information, see ProDOS 8
Technical Note #20, Mirrored Devices and SmartPort.

Further Reference
• ProDOS 8 Technical Reference Manual
• ProDOS 8 Technical Note #20, Mirrored Devices and SmartPort

ProDOS 8
#4: I/O Redirection in DOS and ProDOS 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#4: I/O Redirection in DOS and ProDOS

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note discusses I/O redirection differences between DOS 3.3 and ProDOS.

Under DOS 3.3, all that is necessary to change the I/O hooks is installing your I/O routine
addresses in the character-out vector ($36-$37) and the key-in vector ($38-$39) and notifying
DOS (JSR $3EA) to take your addresses and swap in its intercept routine addresses.

Under ProDOS, there is no instruction installed at $3EA, so what do you do?

You simply leave the ProDOS BASIC command interpreter’s intercept addresses installed at
$36-$39 and install your I/O addresses in the global page at $BE30-$BE33. The locations
$BE30-$BE31 should contain the output address (normally $FDF0, the Monitor COUT1 routine),
while $BE32-$BE33 should contain the input address (normally $FD1B, the Monitor KEYIN
routine).

By keeping these vectors in a global page, a special routine for moving the vectors is no longer
needed, thus, no $3EA instruction. You install the addresses at their destination yourself.

If you intend to switch between devices (i.e., the screen and the printer), you should save the
hooks you find in $BE30-$BE33 and restore them when you are done. Blindly replacing the
values in the global page could easily leave you no way to restore input or output to the previous
device when you are done.

ProDOS 8
#5: ProDOS Block Device Formatting 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#5: ProDOS Block Device Formatting

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald October 1985

This Technical Note formerly described the ProDOS FORMATTER routine.

The ProDOS 8 Update Manual now contains the information about the ProDOS FORMATTER
routine which this Note formerly described. This routine is available from Apple Software
Licensing at Apple Computer, Inc., 20525 Mariani Avenue, M/S 38-I, Cupertino, CA, 95014 or
(408) 974-4667.

Note: This routine does not work properly with network volumes on either entry point.
You cannot format a network volume with ProDOS 8, nor can you make low-
level device calls to it (as FORMATTER does in ENTRY2 to determine the
characteristics of a volume). As a general rule, it is better to use
GET_FILE_INFO to determine the size of the volume since ProDOS MLI calls
work with network volumes.

Further Reference
• ProDOS 8 Update Manual

ProDOS 8
#6: Attaching External Commands to BASIC.SYSTEM 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#6: Attaching External Commands

to BASIC.SYSTEM

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald December 1985

This Technical Note formerly described how to attach an external command to
BASIC.SYSTEM.

The ProDOS 8 Technical Reference Manual, Appendix A now documents the information which
this Note formerly covered about installing an external command into BASIC.SYSTEM to be
treated as a normal BASIC.SYSTEM command.

Further Reference
• ProDOS 8 Technical Reference Manual

ProDOS 8
#7: Starting and Quitting Interpreter Conventions 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#7: Starting and Quitting Interpreter Conventions

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald December 1985

This Technical Note formerly described conventions for a ProDOS application to start and quit.

Section 5.1.5 of the ProDOS 8 Technical Reference Manual now documents the conventions a
ProDOS application should follow when starting and quitting, which were formerly covered in
this Note as well as ProDOS 8 Technical Note #14, Selector and Dispatcher Conventions.

Further Reference
• ProDOS 8 Technical Reference Manual

ProDOS 8
#8: Dealing with /RAM 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#8: Dealing with /RAM

Revised by: Matt Deatherage November 1988
Written by: Kerry Laidlaw October 1984

This Technical Note formerly described conventions for dealing with the built-in ProDOS 8
RAM disk, /RAM.

Section 5.2.2 of the ProDOS 8 Technical Reference Manual now documents the conventions on
how to handle /RAM, including how to disconnect it, how to reconnect it, and precautions you
should follow if doing either, which were covered in this Note. The manual also includes sample
source code.

Executing the sample code which comes with the manual to disconnect /RAM has the undesired
effect of decreasing the maximum number of volumes on-line when used with versions of
ProDOS 8 prior to 1.2. This side effect is because earlier versions of ProDOS 8 do not have the
capability to remove the volume control block (VCB) entry which is allocated for /RAM when it
is installed.

In later versions of ProDOS 8 (1.2 and later), this problem no longer exists, and you should issue
an ON_LINE call to a device after disconnecting it. This call returns error $28 (no device
connected), but it also erases the VCB entry for the disconnected device.

Further Reference
• ProDOS 8 Technical Reference Manual
• ProDOS 8 Update Manual

ProDOS 8
#9: Buffer Management Using BASIC.SYSTEM 1 of 2

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#9: Buffer Management Using BASIC.SYSTEM

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald October 1985

This Technical Note discusses methods for allocating buffers which will not be arbitrarily
deallocated in BASIC.SYSTEM.

Section A.2.1 of the ProDOS 8 Technical Reference Manual describes in detail how an
application may obtain a buffer from BASIC.SYSTEM for its own use. The buffer will be
respected by BASIC.SYSTEM, so if you choose to put a program or other executable code in
there, it will be safe.

However, BASIC.SYSTEM does not provide a way to selectively deallocate the buffers it has
allocated. Although it is quite easy to allocate space by calling GETBUFR ($BEF5) and also
quite easy to deallocate by calling FREEBUFR ($BEF8), it is not so easy to use FREEBUFR to
deallocate a particular buffer.

In fact, FREEBUFR always deallocates all buffers allocated by GETBUFR. This is fine for
transient applications, but a method is needed to protect a static code buffer from being
deallocated by FREEBUFR for a static application.

Location RSHIMEM ($BEFB) contains the high byte of the highest available memory location for
buffers, normally $96. FREEBUFR uses it to determine the beginning page of the highest (or
first) buffer. By lowering the value of RSHIMEM immediately after the first call to GETBUFR,
and before any call to FREEBUFR, we can fool FREEBUFR into not reclaiming all the space. So
although it is not possible to selectively deallocate buffers, it is still possible to reserve space that
FREEBUFR will not reclaim.

Physically, we place the code buffer between BASIC.SYSTEM and its buffers, in the space from
$99FF down.

After creating the protected static code buffer, we can call GETBUFR and FREEBUFR to
maintain temporary buffers as needed by our protected module. FREEBUFR will not reclaim the
protected buffer until after RSHIMEM is restored to its original value.

Apple II Technical Notes

2 of 2 Developer Technical Support

The following is a skeleton example which allocates a two-page buffer for a static code module,
protects it from FREEBUFR, then deprotects it and restores it to its original state.

START LDA #$02 ;get 2 pages
JSR GETBUFR
LDA RSHIMEM ;get current RSHIMEM
SEC ;ready for sub
SBC #$02 ;minus 2 pages
STA RSHIMEM ;save new val to fool FREEBUFR
JSR FREEBUFR ;CALL FREEBUFR to deallocate.

At this point, the value of RSHIMEM is the page number of the beginning of our protected buffer.
The static code may now use GETBUFR and FREEBUFR for transient file buffers without fear of
freeing its own space from RSHIMEM to $99FF.

To release the protected space, simply restore RSHIMEM to its original value and perform a JSR
FREEBUFR.

END LDA RSHIMEM ;get current val
CLC ;ready for ADD
ADC #2 ;give back 2 pages
STA RSHIMEM ;tell FREEBUFR about it
JSR FREEBUFR ;DO FREEBUFR
RTS

You can reserve any number of pages using this method, as long as the amount you reserve is
within available memory limits.

Further Reference
• ProDOS 8 Technical Reference Manual

ProDOS 8
#10: Installing Clock Driver Routines 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#10: Installing Clock Driver Routines

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note formerly described how to install a clock driver routine other than the
default.

Section 6.1.1 of the ProDOS 8 Technical Reference Manual documents how to install a clock
driver other than the default ThunderClock™ driver or the Apple IIGS clock driver into ProDOS
8, which this Note formerly covered.

Further Reference
• ProDOS 8 Technical Reference Manual
• ProDOS 8 Technical Note #1, The GETLN Buffer and a ProDOS Clock Card

ProDOS 8
#11: The ProDOS 8 MACHID Byte 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#11: The ProDOS 8 MACHID Byte

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note describes the machine ID byte (MACHID) which ProDOS maintains to help
identify different machine types.

ProDOS 8 maintains a machine ID byte, MACHID, at location $BF98 in the ProDOS 8 global
page.
Section 5.2.4 of the ProDOS 8 Technical Reference Manual correctly documents the definition
of this byte.

MACHID has become less robust through the years. Although it can tell you if you are running
on an Apple][,][+, IIe, IIc, or Apple /// in emulation mode, it cannot tell you which version of
an Apple IIe or IIc you are using, nor can it identify an Apple IIGS (it thinks a IIGS is an Apple
IIe). However, the byte still provides a quick test for two components of the system which you
might wish to identify: an 80-column card and a clock card.

Bit 1 of MACHID identifies an 80-column card. ProDOS 8 Technical Note #15, How ProDOS 8
Treats Slot 3 explains how this identification is determined. Note that on an Apple IIGS, this bit
is always set, even if the user selects Your Card in the Control Panel for slot 3. The bit is set
since ProDOS 8 versions 1.7 and later switch out a card in slot 3 in favor of the built-in 80-
column firmware, unless the card in slot 3 is an 80-column card. ProDOS 8 behaves in the same
manner on an Apple IIe as well.

Bit 0 of MACHID identifies a clock card. Note that on an Apple IIGS, this bit is always set since
the IIGS clock cannot be switched out of the system. Due to these unchangeable settings, the
value of MACHID on the Apple IIGS is always $B3, as it is on any Apple IIe with an 80-column
card and a clock card.

Further Reference
• ProDOS 8 Technical Reference Manual
• Apple IIGS Hardware Reference Manual
• ProDOS 8 Technical Note #15, How ProDOS 8 Treats Slot 3
• Miscellaneous Technical Note #7, Apple II Family Identification

ProDOS 8
#12: Interrupt Handling 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#12: Interrupt Handling

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note clarifies some aspects of ProDOS 8 interrupt handlers.

Although the ProDOS 8 Technical Reference Manual (section 6.2) documents interrupt handlers
and includes a code example, there still remain a few unclear areas on this subject matter; this
Note clarifies these areas.

All interrupt routines must begin with a CLD instruction. Although not checked in initial
releases of ProDOS 8, this first byte will be checked in future revisions to verify the validity of
the interrupt handler.

Although your interrupt handler does not have to disable interrupts (ProDOS 8 does that for
you), it must never re-enable interrupts with a 6502 CLI instruction. Another interrupt coming
through during a non-reentrant interrupt handler can bring the system down.

If your application includes an interrupt handler, you should do the following before exiting:

1. Turn off the interrupt source. Remember, 255 unclaimed interrupts will cause
system death.

2. Make a DEALLOC_INTERRUPT call before exiting from your application. Do
not leave a vector installed that points to a routine that is no longer there.

Within your interrupt handler routines, you must leave all memory banks in the same
configuration you found them. Do not forget anything: main language card, main alternate
$D000 space, main motherboard ROM, and, on an Apple IIe, IIc, or IIGS, auxiliary language
card, auxiliary alternate $D000 space, alternate zero page and stack, etc. This is very important
since the ProDOS interrupt receiver assumes that the environment is absolutely unaltered when
your handler relinquishes control. In addition, be sure to leave the language card write-enabled.

If your handler recognizes an interrupt and services it, you should clear the carry flag (CLC)
immediately before returning (RTS). If it was not your interrupt, you set set the carry (SEC)
immediately before returning (RTS). Do not use a return from interrupt (RTI) to exit; the
ProDOS interrupt receiver still has some housekeeping to perform before it issues the RTI
instruction.

Apple II Technical Notes

2 of 1 Developer Technical Support

Further Reference
• ProDOS 8 Technical Reference Manual

ProDOS 8
#13: Double High-Resolution Graphics Files 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#13: Double High-Resolution Graphics Files

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note formerly described a proposed file format for Apple II double high-
resolution graphics images.

The information formerly in this Note, the proposed file format for Apple II double high-
resolution graphics images, is now covered in the Apple II File Type Notes, File Type $08.

Further Reference
• Apple II File Type Notes, File Type $08

ProDOS 8
#14: Selector and Dispatcher Conventions 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#14: Selector and Dispatcher Conventions

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald December 1985

This Technical Note formerly described conventions for a ProDOS application to start and quit.

Section 5.1.5 of the ProDOS 8 Technical Reference Manual now documents the conventions a
ProDOS application should follow when starting and quitting, which were formerly covered in
this Note as well as ProDOS 8 Technical Note #7, Starting and Quitting Interpreter Conventions.

Further Reference
• ProDOS 8 Technical Reference Manual

ProDOS 8
#15: How ProDOS 8 Treats Slot 3 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#15: How ProDOS 8 Treats Slot 3

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note describes how ProDOS 8 reacts to non-Apple 80-column cards in slot 3 and
how it identifies them.

The ProDOS 8 Update Manual now documents much of the information which was originally
covered in this Note about how ProDOS 8 reacts to non-Apple 80-column cards in slot 3.
However, since there is still some confusion on the issue, we summarize it again in this Note.

On an Apple][+, ProDOS 8 considers the following four Pascal 1.1 protocol ID bytes sufficient
to identify a card in slot 3 as an 80-column card and mark the corresponding bit in the MACHID
byte: $C305 = $38, $C307 = $18, $C30B = $01, $C30C = $8x, where x represents the card’s
own ID value and is not checked. On any other Apple II, the following fifth ID byte must also
match: $C3FA = $2C. This fifth ID byte assures ProDOS 8 that the card supports interrupts on
an Apple IIe. Unless ProDOS 8 finds all five ID bytes in an Apple IIe or later, it will not identify
the card as an 80-column card and will enable the built-in 80-column firmware instead. In an
Apple IIc or IIGS, the internal firmware always matches these five bytes (see below).

If you are designing an 80-column card and wish to meet these requirements, you must follow
certain other considerations as well as matching the five identification bytes; the ProDOS 8
Update Manual enumerates these other considerations.

The ProDOS 8 Update Manual notes that an Apple IIGS does not switch in the 80-column
firmware if it is not selected in the Control Panel. However, due to a bug in ProDOS 8 versions
1.6 and earlier, it switches in the 80-column firmware unconditionally. ProDOS 8 cannot respect
the Control Panel setting for 80-column firmware in certain situations; it cannot operate in a
128K machine in a 128K configuration (including /RAM) without the presence of the 80-column
firmware, since it must utilize the extra 64K. This is just one of the reasons ProDOS 8 does not
recognize a card in slot 3 if it is not an 80-column card, as outlined above.

With ProDOS 8 version 1.7 and later, an Apple IIGS behaves exactly like an Apple IIe with
respect to slot 3. If a card is slot 3 is selected in the Control Panel, ProDOS 8 ignores it in favor
of the built-in 80-column firmware—unless the card matches the five identification bytes listed
above. This works the same on a Apple IIe.

Apple II Technical Notes

2 of 1 Developer Technical Support

Further Reference
• ProDOS 8 Technical Reference Manual
• ProDOS 8 Update Manual
• ProDOS 8 Technical Note #11, The ProDOS 8 MACHID Byte

ProDOS 8
#16: How to Format a ProDOS Disk Device 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#16: How to Format a ProDOS Disk Device

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note supplements the ProDOS 8 Technical Reference Manual in its description
of the low-level driver call that formats the media in a ProDOS device.

The ProDOS 8 Technical Reference Manual describes the low-level driver call that formats the
media in a ProDOS device, but it neglects to mention the following:

1. It does not work for Disk II drives or /RAM, both of which ProDOS treats
specially with built-in driver code.

2. ProDOS has no easy way to tell you whether a device is a Disk II drive or /RAM.

Once ProDOS finishes building its device table, which it does when it boots, it no longer cares
about what kind of devices exist, so it does not keep any information about the different types of
devices available. ProDOS identifies Disk II devices and installs a built-in driver for them.
When it has installed all devices which are physically present, ProDOS then installs /RAM, in a
manner similar to Disk II drives, by pointing to the driver code which is within ProDOS itself.
This method presents a problem for the developer who wishes to format ProDOS disks since the
Disk II driver and the /RAM driver respond to the FORMAT request in non-standard ways, yet
there is no identification in the global page that tells you which devices are Disk II drives or
/RAM.

The Disk II driver does not support the FORMAT request, and the /RAM driver responds by
“formatting” the RAM disk and also writing to it a virgin directory and bitmap; neither of these
two cases is documented in the ProDOS 8 Technical Reference Manual. To write special-case
code for these two device types, you must be able to identify them, and the method for
identification is available in ProDOS 8 Technical Note #21: Identifying ProDOS Devices.

You should note, however, that AppleTalk network volumes cannot be formatted; they return a
DEVICE NOT CONNECTED error for the FORMAT and any low-level device call. You may
access AppleTalk network volumes through ProDOS MLI calls only.

Also note that Apple licences a ProDOS 8 Formatter routine, which correctly identifies and
handles Disk II drives and /RAM. You should contact Apple Software Licensing at Apple
Computer, Inc., 20525 Mariani Avenue, M/S 38-I, Cupertino, CA, 95014 or (408) 974-4667 if
you wish to license this routine.

Apple II Technical Notes

2 of 1 Developer Technical Support

Further Reference
• ProDOS 8 Technical Reference Manual
• ProDOS 8 Update Manual
• ProDOS 8 Technical Note #21, Identifying ProDOS Devices

ProDOS 8
#17: Recursive ProDOS Catalog Routine 1 of 11

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#17: Recursive ProDOS Catalog Routine

Revised by: Dave Lyons, Keith Rollin, & Matt Deatherage November 1989
Written by: Greg Seitz December 1983

This Technical Note presents an assembly language example of a recursive directory reading
routine which is AppleShare compatible.
Changes since November 1988: The routine now ignores the file_count field in a
directory, and it properly increments ThisBlock. More discussion of AppleShare volumes is
included.

This Note presents a routine in assembly language for recursively cataloging a ProDOS
directory. If you apply this technique to the volume directory of a disk, it will display the name
of every file stored on the disk. The routine displays the contents of a given directory (the
volume directory in this case), displays the contents of each subdirectory as it is encountered.

READ_BLOCK is not used, since it does not work with AppleShare servers. READ is used
instead, since it works for AppleShare volumes as well as local disks. Instead of using directory
pointers to decide which block to read next, we simply read the directory and display filenames
as we go, until we reach a subdirectory file. When we reach a subdirectory, the routine saves our
place, plunges down one level of the tree structure, and catalogs the subdirectory. You repeat the
process if you find a subdirectory at the current level. When you reach the EOF of any directory,
the routine closes the current directory and pops back up one level, and when it reaches the EOF
of the initial directory, the routine is finished.

This routine is generally compatible with AppleShare volumes, but it is impossible to guarantee
a complete traversal of all the accessible files on an AppleShare volume: another user on the
same volume can add or remove files or directories at any time. If entries are added or removed,
some filenames may be displayed twice or missed completely. Be sure that your programs deal
with this sort of situation adequately.

We assume that AppleShare is in short naming mode (as it is by default under ProDOS 8). If
you enable long naming mode, then illegal characters in filenames will not be translated into
question marks. In this case, the code would need to be modified to deal with non-ASCII
characters. Also, the ChopName routine would need to be aware that a slash (/) character could
be contained inside the name of a directory that had been added to the pathname. (As the code
stands, such directories fail to open, but their names are still temporarily added to the pathname.)

Apple II Technical Notes

2 of 11 #17: Recursive ProDOS Catalog Routine

When the catalog routine encounters an error, it displays a brief message and continues. It is
important not to abort on an error, since AppleShare volumes generally contain files and folders
with names that are inaccessible to ProDOS, as well as folders that are inaccessible to your
program's user (error $4E, access error).

The code example includes a simple test of the ReadDir routine, which is the actual recursive
catalog routine. Note that the simple test relies upon the GETBUFR routine in BASIC.SYSTEM
to allocate a buffer; therefore, as presented, the routine requires the presence of
BASIC.SYSTEM. The actual ReadDir routine requires nothing outside of the ProDOS 8 MLI.

----- NEXT OBJECT FILE NAME IS CATALOG.0
0800: 0800 2 org $800
0800: 3 ***
0800: 4 *
0800: 5 * Recursive ProDOS Catalog Routine
0800: 6 *
0800: 7 * by: Greg Seitz 12/83
0800: 8 * Pete McDonald 1/86
0800: 9 * Keith Rollin 7/88
0800: 10 * Dave Lyons 11/89
0800: 11 *
0800: 12 * This program shows the latest "Apple Approved"
0800: 13 * method for reading a directory under ProDOS 8.
0800: 14 * READ_BLOCK is not used, since it is incompatible
0800: 15 * with AppleShare file servers.
0800: 16 *
0800: 17 * November 1989: The file_count field is no longer
0800: 18 * used (all references to ThisEntry were removed).
0800: 19 * This is because the file count can change on the fly
0800: 20 * on AppleShare volumes. (Note that the old code was
0800: 21 * accidentally decrementing the file count when it
0800: 22 * found an entry for a deleted file, so some files
0800: 23 * could be left off the end of the list.)
0800: 24 *
0800: 25 * Also, ThisBlock now gets incremented when a chunk
0800: 26 * of data is read from a directory. Previously, this
0800: 27 * routine could get stuck in an endless loop when
0800: 28 * a subdirectory was found outside the first block of
0800: 29 * its parent directory.
0800: 30 *
0800: 31 * Limitations: This routine cannot reach any
0800: 32 * subdirectory whose pathname is longer than 64
0800: 33 * characters, and it will not operate correctly if
0800: 34 * any subdirectory is more than 255 blocks long
0800: 35 * (because ThisBlock is only one byte).
0800: 36 *
0800: 37 ***
0800: 38 *
0800: 39 * Equates
0800: 40 *
0800: 41 * Zero page locations
0800: 42 *
0800: 0080 43 dirName equ $80 ; pointer to directory name
0800: 0082 44 entPtr equ $82 ; ptr to current entry
0800: 45 *
0800: 46 * ProDOS command numbers
0800: 47 *
0800: BF00 48 MLI equ $BF00 ; MLI entry point
0800: 00C7 49 mliGetPfx equ $C7 ; GET_PREFIX
0800: 00C8 50 mliOpen equ $C8 ; Open a file command
0800: 00CA 51 mliRead equ $CA ; Read a file command
0800: 00CC 52 mliClose equ $CC ; Close a file command

Developer Technical Support November 1989

ProDOS 8
#17: Recursive ProDOS Catalog Routine 3 of 11

0800: 00CE 53 mliSetMark equ $CE ; SET_MARK command
0800: 004C 54 EndOfFile equ $4C ; EndOfFile error
0800: 55 *
0800: 56 * BASIC.SYSTEM stuff
0800: 57 *
0800: BEF5 58 GetBufr equ $BEF5 ; BASIC.SYSTEM get buffer routine

Apple II Technical Notes

4 of 11 #17: Recursive ProDOS Catalog Routine

01 CATALOG ProDOS Catalog Routine 14-OCT-89 16:20 PAGE 3

0800: 59 *
0800: 60 * Offsets into the directory
0800: 61 *
0800: 0000 62 oType equ $0 ; offset to file type byte
0800: 0023 63 oEntLen equ $23 ; length of each dir. entry
0800: 0024 64 oEntBlk equ $24 ; entries in each block
0800: 65 *
0800: 66 * Monitor routines
0800: 67 *
0800: FDED 68 cout equ $FDED ; output a character
0800: FD8E 69 crout equ $FD8E ; output a RETURN
0800: FDDA 70 prbyte equ $FDDA ; print byte in hex
0800: 00A0 71 space equ $A0 ; a space character
0800: 72 *
0800: 73 ***
0800: 74 *
0800: 0800 75 Start equ *
0800: 76 *
0800: 77 * Simple routine to test the recursive ReadDir
0800: 78 * routine. It gets an I/O buffer for ReadDir, gets
0800: 79 * the current prefix, sets the depth of recursion
0800: 80 * to zero, and calls ReadDir to process all of the
0800: 81 * entries in the directory.
0800: 82 *
0800:A9 04 83 lda #4 ; get an I/O buffer
0802:20 F5 BE 84 jsr GetBufr
0805:B0 17 081E 85 bcs exit ; didn't get it
0807:8D D7 09 86 sta ioBuf+1
080A: 87 *
080A: 88 * Use the current prefix for the name of the
080A: 89 * directory to display. Note that the string we
080A: 90 * pass to ReadDir has to end with a "/", and that
080A: 91 * the result of GET_PREFIX does.
080A: 92 *
080A:20 00 BF 93 jsr MLI
080D:C7 94 db mliGetPfx
080E:E8 09 95 dw GetPParms
0810:B0 0C 081E 96 bcs exit
0812: 97 *
0812:A9 00 98 lda #0
0814:8D CE 09 99 sta Depth
0817: 100 *
0817:A9 EB 101 lda #nameBuffer
0819:A2 0B 102 ldx #<nameBuffer
081B:20 1F 08 103 jsr ReadDir
081E: 104 *
081E: 081E 105 exit equ *
081E:60 106 rts
081F: 107 *
081F: 108 ***
081F: 109 ***
081F: 110 *
081F: 081F 111 ReadDir equ *
081F: 112 *
081F: 113 * This is the actual recursive routine. It takes as
081F: 114 * input a pointer to the directory name to read in
081F: 115 * A,X (lo,hi), opens it, and starts to read the
081F: 116 * entries. When it encounters a filename, it calls

Developer Technical Support November 1989

ProDOS 8
#17: Recursive ProDOS Catalog Routine 5 of 11

01 CATALOG ProDOS Catalog Routine 14-OCT-89 16:20 PAGE 4

081F: 117 * the routine "VisitFile". When it encounters a
081F: 118 * directory name, it calls "VisitDir".
081F: 119 *
081F: 120 * The directory pathname string must end with a "/"
081F: 121 * character.
081F: 122 *
081F: 123 ***
081F: 124 *
081F:85 80 125 sta dirName ; save a pointer to name
0821:86 81 126 stx dirName+1
0823: 127 *
0823:8D D4 09 128 sta openName ; set up OpenFile params
0826:8E D5 09 129 stx openName+1
0829: 130 *
0829: 0829 131 ReadDir1 equ * ; recursive entry point
0829:20 79 08 132 jsr OpenDir ; open the directory as a file
082C:B0 1F 084D 133 bcs done
082E: 134 *
082E:4C 48 08 135 jmp nextEntry ; jump to the end of the loop
0831: 136 *
0831: 0831 137 loop equ *
0831:A0 00 138 ldy #oType ; get type of current entry
0833:B1 82 139 lda (entPtr),y
0835:29 F0 140 and #$F0 ; look at 4 high bits
0837:C9 00 141 cmp #0 ; inactive entry?
0839:F0 0D 0848 142 beq nextEntry ; yes - bump to next one
083B:C9 D0 143 cmp #$D0 ; is it a directory?
083D:F0 06 0845 144 beq ItsADir ; yes, so call VisitDir
083F:20 B3 08 145 jsr VisitFile ; no, it's a file
0842:4C 48 08 146 jmp nextEntry
0845: 147 *
0845:20 BA 08 148 ItsADir jsr VisitDir
0848: 0848 149 nextEntry equ *
0848:20 77 09 150 jsr GetNext ; get pointer to next entry
084B:90 E4 0831 151 bcc loop ; Carry set means we're done
084D: 084D 152 done equ * ; moved before PHA (11/89 DAL)
084D:48 153 pha ; save error code
084E: 154 *
084E:20 00 BF 155 jsr MLI ; close the directory
0851:CC 156 db mliClose
0852:E1 09 157 dw CloseParms
0854: 158 *
0854:68 159 pla ;we're expecting EndOfFile error
0855:C9 4C 160 cmp #EndOfFile
0857:F0 1F 0878 161 beq hitDirEnd
0859: 162 *
0859: 163 * We got an error other than EndOfFile--report the
0859: 164 * error clumsily ("ERR=$xx").
0859: 165 *
0859:48 166 pha
085A:A9 C5 167 lda #'E'|$80
085C:20 ED FD 168 jsr cout
085F:A9 D2 169 lda #'R'|$80
0861:20 ED FD 170 jsr cout
0864:20 ED FD 171 jsr cout
0867:A9 BD 172 lda #'='|$80
0869:20 ED FD 173 jsr cout
086C:A9 A4 174 lda #'$'|$80

Apple II Technical Notes

6 of 11 #17: Recursive ProDOS Catalog Routine

01 CATALOG ProDOS Catalog Routine 14-OCT-89 16:20 PAGE 5

086E:20 ED FD 175 jsr cout
0871:68 176 pla
0872:20 DA FD 177 jsr prbyte
0875:20 8E FD 178 jsr crout
0878: 179 *
0878: 0878 180 hitDirEnd equ *
0878:60 181 rts
0879: 182 *
0879: 183 ***
0879: 184 *
0879: 0879 185 OpenDir equ *
0879: 186 *
0879: 187 * Opens the directory pointed to by OpenParms
0879: 188 * parameter block. This pointer should be init-
0879: 189 * ialized BEFORE this routine is called. If the
0879: 190 * file is successfully opened, the following
0879: 191 * variables are set:
0879: 192 *
0879: 193 * xRefNum ; all the refnums
0879: 194 * entryLen ; size of directory entries
0879: 195 * entPtr ; pointer to current entry
0879: 196 * ThisBEntry ; entry number within this block
0879: 197 * ThisBlock ; offset (in blocks) into dir.
0879: 198 *
0879:20 00 BF 199 jsr MLI ; open dir as a file
087C:C8 200 db mliOpen
087D:D3 09 201 dw OpenParms
087F:B0 31 08B2 202 bcs OpenDone
0881: 203 *
0881:AD D8 09 204 lda oRefNum ; copy the refnum return-
0884:8D DA 09 205 sta rRefNum ; ed by Open into the
0887:8D E2 09 206 sta cRefNum ; other param blocks.
088A:8D E4 09 207 sta sRefNum
088D: 208 *
088D:20 00 BF 209 jsr MLI ; read the first block
0890:CA 210 db mliRead
0891:D9 09 211 dw ReadParms
0893:B0 1D 08B2 212 bcs OpenDone
0895: 213 *
0895:AD 0E 0A 214 lda buffer+oEntLen ; init 'entryLen'
0898:8D D1 09 215 sta entryLen
089B: 216 *
089B:A9 EF 217 lda #buffer+4 ; init ptr to first entry
089D:85 82 218 sta entPtr
089F:A9 09 219 lda #<buffer+4
08A1:85 83 220 sta entPtr+1
08A3: 221 *
08A3:AD 0F 0A 222 lda buffer+oEntblk ; init these values based on
08A6:8D CF 09 223 sta ThisBEntry ; values in the dir header
08A9:8D D2 09 224 sta entPerBlk
08AC: 225 *
08AC:A9 00 226 lda #0 ; init block offset into dir.
08AE:8D D0 09 227 sta ThisBlock
08B1: 228 *
08B1:18 229 clc ; say that open was OK
08B2: 230 *
08B2: 08B2 231 OpenDone equ *
08B2:60 232 rts

Developer Technical Support November 1989

ProDOS 8
#17: Recursive ProDOS Catalog Routine 7 of 11

01 CATALOG ProDOS Catalog Routine 14-OCT-89 16:20 PAGE 6

08B3: 233 *
08B3: 234 ***
08B3: 235 *
08B3: 08B3 236 VisitFile equ *
08B3: 237 *
08B3: 238 * Do whatever is necessary when we encounter a
08B3: 239 * file entry in the directory. In this case, we
08B3: 240 * print the name of the file.
08B3: 241 *
08B3:20 AC 09 242 jsr PrintEntry
08B6:20 8E FD 243 jsr crout
08B9:60 244 rts
08BA: 245 *
08BA: 246 ***
08BA: 247 *
08BA: 08BA 248 VisitDir equ *
08BA: 249 *
08BA: 250 * Print the name of the subdirectory we are looking
08BA: 251 * at, appending a "/" to it (to indicate that it's
08BA: 252 * a directory), and then calling RecursDir to list
08BA: 253 * everything in that directory.
08BA: 254 *
08BA:20 AC 09 255 jsr PrintEntry ; print dir's name
08BD:A9 AF 256 lda #'/'|$80 ; tack on / at end
08BF:20 ED FD 257 jsr cout
08C2:20 8E FD 258 jsr crout
08C5: 259 *
08C5:20 C9 08 260 jsr RecursDir ; enumerate all entries in sub-
dir.
08C8: 261 *
08C8:60 262 rts
08C9: 263 *
08C9: 264 ***
08C9: 265 *
08C9: 08C9 266 RecursDir equ *
08C9: 267 *
08C9: 268 * This routine calls ReadDir recursively. It
08C9: 269 *
08C9: 270 * - increments the recursion depth counter,
08C9: 271 * - saves certain variables onto the stack
08C9: 272 * - closes the current directory
08C9: 273 * - creates the name of the new directory
08C9: 274 * - calls ReadDir (recursively)
08C9: 275 * - restores the variables from the stack
08C9: 276 * - restores directory name to original value
08C9: 277 * - re-opens the old directory
08C9: 278 * - moves to our last position within it
08C9: 279 * - decrements the recursion depth counter
08C9: 280 *
08C9:EE CE 09 281 inc Depth ; bump this for recursive call
08CC: 282 *
08CC: 283 * Save everything we can think of (the women,
08CC: 284 * the children, the beer, etc.).
08CC: 285 *
08CC:A5 83 286 lda entPtr+1
08CE:48 287 pha
08CF:A5 82 288 lda entPtr
08D1:48 289 pha
08D2:AD CF 09 290 lda ThisBEntry

Apple II Technical Notes

8 of 11 #17: Recursive ProDOS Catalog Routine

01 CATALOG ProDOS Catalog Routine 14-OCT-89 16:20 PAGE 7

08D5:48 291 pha
08D6:AD D0 09 292 lda ThisBlock
08D9:48 293 pha
08DA:AD D1 09 294 lda entryLen
08DD:48 295 pha
08DE:AD D2 09 296 lda entPerblk
08E1:48 297 pha
08E2: 298 *
08E2: 299 * Close the current directory, as ReadDir will
08E2: 300 * open files of its own, and we don't want to
08E2: 301 * have a bunch of open files lying around.
08E2: 302 *
08E2:20 00 BF 303 jsr MLI
08E5:CC 304 db mliClose
08E6:E1 09 305 dw CloseParms
08E8: 306 *
08E8:20 2F 09 307 jsr ExtendName ; make new dir name
08EB: 308 *
08EB:20 29 08 309 jsr ReadDir1 ; enumerate the subdirectory
08EE: 310 *
08EE:20 65 09 311 jsr ChopName ; restore old directory name
08F1: 312 *
08F1:20 79 08 313 jsr OpenDir ; re-open it back up
08F4:90 01 08F7 314 bcc reOpened
08F6: 315 *
08F6: 316 * Can't continue from this point--exit in
08F6: 317 * whatever way is appropriate for your
08F6: 318 * program.
08F6: 319 *
08F6:00 320 brk
08F7: 321 *
08F7: 08F7 322 reOpened equ *
08F7: 323 *
08F7: 324 * Restore everything that we saved before
08F7: 325 *
08F7:68 326 pla
08F8:8D D2 09 327 sta entPerBlk
08FB:68 328 pla
08FC:8D D1 09 329 sta entryLen
08FF:68 330 pla
0900:8D D0 09 331 sta ThisBlock
0903:68 332 pla
0904:8D CF 09 333 sta ThisBEntry
0907:68 334 pla
0908:85 82 335 sta entPtr
090A:68 336 pla
090B:85 83 337 sta entPtr+1
090D: 338 *
090D:A9 00 339 lda #0
090F:8D E5 09 340 sta Mark
0912:8D E7 09 341 sta Mark+2
0915:AD D0 09 342 lda ThisBlock ; reset last position in dir
0918:0A 343 asl a ; = to block # times 512
0919:8D E6 09 344 sta Mark+1
091C:2E E7 09 345 rol Mark+2
091F: 346 *
091F:20 00 BF 347 jsr MLI ; reset the file marker
0922:CE 348 db mliSetMark

Developer Technical Support November 1989

ProDOS 8
#17: Recursive ProDOS Catalog Routine 9 of 11

01 CATALOG ProDOS Catalog Routine 14-OCT-89 16:20 PAGE 8

0923:E3 09 349 dw SetMParms
0925: 350 *
0925:20 00 BF 351 jsr MLI ; now read in the block we
0928:CA 352 db mliRead ; were on last.
0929:D9 09 353 dw ReadParms
092B: 354 *
092B:CE CE 09 355 dec Depth
092E:60 356 rts
092F: 357 *
092F: 358 ***
092F: 359 *
092F: 092F 360 ExtendName equ *
092F: 361 *
092F: 362 * Append the name in the current directory entry
092F: 363 * to the name in the directory name buffer. This
092F: 364 * will allow us to descend another level into the
092F: 365 * disk hierarchy when we call ReadDir.
092F: 366 *
092F:A0 00 367 ldy #0 ; get length of string to copy
0931:B1 82 368 lda (entPtr),y
0933:29 0F 369 and #$0F
0935:8D 62 09 370 sta extCnt ; save the length here
0938:8C 63 09 371 sty srcPtr ; init src ptr to zero
093B: 372 *
093B:A0 00 373 ldy #0 ; init dest ptr to end of
093D:B1 80 374 lda (dirName),y ; the current directory name
093F:8D 64 09 375 sta destPtr
0942: 376 *
0942: 0942 377 extloop equ *
0942:EE 63 09 378 inc srcPtr ; bump to next char to read
0945:EE 64 09 379 inc destPtr ; bump to next empty location
0948:AC 63 09 380 ldy srcPtr ; get char of sub-dir name
094B:B1 82 381 lda (entPtr),y
094D:AC 64 09 382 ldy destPtr ; tack on to end of cur. dir.
0950:91 80 383 sta (dirName),y
0952:CE 62 09 384 dec extCnt ; done all chars?
0955:D0 EB 0942 385 bne extloop ; no - so do more
0957: 386 *
0957:C8 387 iny
0958:A9 2F 388 lda #'/' ; tack "/" on to the end
095A:91 80 389 sta (dirName),y
095C: 390 *
095C:98 391 tya ; fix length of filename to open
095D:A0 00 392 ldy #0
095F:91 80 393 sta (dirName),y
0961: 394 *
0961:60 395 rts
0962: 396 *
0962: 0001 397 extCnt ds 1
0963: 0001 398 srcPtr ds 1
0964: 0001 399 destPtr ds 1
0965: 400 *
0965: 401 *
0965: 402 ***
0965: 403 *
0965: 0965 404 ChopName equ *
0965: 405 *
0965: 406 * Scans the current directory name, and chops

Apple II Technical Notes

10 of 11 #17: Recursive ProDOS Catalog Routine

01 CATALOG ProDOS Catalog Routine 14-OCT-89 16:20 PAGE 9

0965: 407 * off characters until it gets to a /.
0965: 408 *
0965:A0 00 409 ldy #0 ; get len of current dir.
0967:B1 80 410 lda (dirName),y
0969:A8 411 tay
096A: 096A 412 ChopLoop equ *
096A:88 413 dey ; bump to previous char
096B:B1 80 414 lda (dirName),y
096D:C9 2F 415 cmp #'/'
096F:D0 F9 096A 416 bne ChopLoop
0971:98 417 tya
0972:A0 00 418 ldy #0
0974:91 80 419 sta (dirName),y
0976:60 420 rts
0977: 421 *
0977: 422 ***
0977: 423 *
0977: 0977 424 GetNext equ *
0977: 425 *
0977: 426 * This routine is responsible for making a pointer
0977: 427 * to the next entry in the directory. If there are
0977: 428 * still entries to be processed in this block, then
0977: 429 * we simply bump the pointer by the size of the
0977: 430 * directory entry. If we have finished with this
0977: 431 * block, then we read in the next block, point to
0977: 432 * the first entry, and increment our block counter.
0977: 433 *
0977:CE CF 09 434 dec ThisBEntry ; dec count for this block
097A:F0 10 098C 435 beq ReadNext ; done w/this block, get next one
097C: 436 *
097C:18 437 clc ; else bump up index
097D:A5 82 438 lda entPtr
097F:6D D1 09 439 adc entryLen
0982:85 82 440 sta entPtr
0984:A5 83 441 lda entPtr+1
0986:69 00 442 adc #0
0988:85 83 443 sta entPtr+1
098A:18 444 clc ; say that the buffer's good
098B:60 445 rts
098C: 446 *
098C: 098C 447 ReadNext equ *
098C:20 00 BF 448 jsr MLI ; get the next block
098F:CA 449 db mliRead
0990:D9 09 450 dw ReadParms
0992:B0 16 09AA 451 bcs DirDone
0994: 452 *
0994:EE D0 09 453 inc ThisBlock
0997: 454 *
0997:A9 EF 455 lda #buffer+4 ; set entry pointer to beginning
0999:85 82 456 sta entPtr ; of first entry in block
099B:A9 09 457 lda #<buffer+4
099D:85 83 458 sta entPtr+1
099F: 459 *
099F:AD D2 09 460 lda entPerBlk ; re-init 'entries in this block'
09A2:8D CF 09 461 sta ThisBEntry
09A5:CE CF 09 462 dec ThisBEntry
09A8:18 463 clc ; return 'No error'
09A9:60 464 rts

Developer Technical Support November 1989

ProDOS 8
#17: Recursive ProDOS Catalog Routine 11 of 11

01 CATALOG ProDOS Catalog Routine 14-OCT-89 16:20 PAGE 10

09AA: 465 *
09AA: 09AA 466 DirDone equ *
09AA:38 467 sec ; return 'an error occurred' (error
in A)
09AB:60 468 rts
09AC: 469 *
09AC: 470 ***
09AC: 471 *
09AC: 09AC 472 PrintEntry equ *
09AC: 473 *
09AC: 474 * Using the pointer to the current entry, this
09AC: 475 * routine prints the entry name. It also pays
09AC: 476 * attention to the recursion depth, and indents
09AC: 477 * by 2 spaces for every level.
09AC: 478 *
09AC:AD CE 09 479 lda Depth ; indent two blanks for each
level
09AF:0A 480 asl a ; of directory nesting
09B0:AA 481 tax
09B1:F0 08 09BB 482 beq spcDone
09B3:A9 A0 483 spcloop lda #space
09B5:20 ED FD 484 jsr cout
09B8:CA 485 dex
09B9:D0 F8 09B3 486 bne spcloop
09BB: 09BB 487 spcDone equ *
09BB: 488 *
09BB:A0 00 489 ldy #0 ; get byte that has the length
byte
09BD:B1 82 490 lda (entPtr),y
09BF:29 0F 491 and #$0F ; get just the length
09C1:AA 492 tax
09C2: 09C2 493 PrntLoop equ *
09C2:C8 494 iny ; bump to the next char.
09C3:B1 82 495 lda (entPtr),y ; get next char
09C5:09 80 496 ora #$80 ; COUT likes high bit set
09C7:20 ED FD 497 jsr cout ; print it
09CA:CA 498 dex ; printed all chars?
09CB:D0 F5 09C2 499 bne PrntLoop ; no - keep going
09CD:60 500 rts
09CE: 501 *
09CE: 502 ***
09CE: 503 *
09CE: 504 * Some global variables
09CE: 505 *
09CE: 0001 506 Depth ds 1 ; amount of recursion
09CF: 0001 507 ThisBEntry ds 1 ; entry in this block
09D0: 0001 508 ThisBlock ds 1 ; block with dir
09D1: 0001 509 entryLen ds 1 ; length of each directory entry
09D2: 0001 510 entPerBlk ds 1 ; entries per block
09D3: 511 *
09D3: 512 ***
09D3: 513 *
09D3: 514 * ProDOS command parameter blocks
09D3: 515 *
09D3: 09D3 516 OpenParms equ *
09D3:03 517 db 3 ; number of parms
09D4: 0002 518 OpenName ds 2 ; pointer to filename
09D6:00 00 519 ioBuf dw $0000 ; I/O buffer
09D8: 0001 520 oRefNum ds 1 ; returned refnum
09D9: 521 *
09D9: 09D9 522 ReadParms equ *

Apple II Technical Notes

12 of 11 #17: Recursive ProDOS Catalog Routine

01 CATALOG ProDOS Catalog Routine 14-OCT-89 16:20 PAGE 11

09D9:04 523 db 4 ; number of parms
09DA: 0001 524 rRefNum ds 1 ; refnum from Open
09DB:EB 09 525 dw buffer ; pointer to buffer
09DD:00 02 526 reqAmt dw 512 ; amount to read
09DF: 0002 527 retAmt ds 2 ; amount actually read
09E1: 528 *
09E1: 09E1 529 CloseParms equ *
09E1:01 530 db 1 ; number of parms
09E2: 0001 531 cRefNum ds 1 ; refnum from Open
09E3: 532 *
09E3: 09E3 533 SetMParms equ *
09E3:02 534 db 2 ; number of parms
09E4: 0001 535 sRefNum ds 1 ; refnum from Open
09E5: 0003 536 Mark ds 3 ; file position
09E8: 537 *
09E8: 09E8 538 GetPParms equ *
09E8:01 539 db 1 ; number of parms
09E9:EB 0B 540 dw nameBuffer ; pointer to buffer
09EB: 541 *
09EB: 0200 542 buffer ds 512 ; enough for whole block
0BEB: 543 *
0BEB: 0040 544 nameBuffer ds 64 ; space for directory name

01 SYMBOL TABLE SORTED BY SYMBOL 14-OCT-89 16:20 PAGE 12

 09EB BUFFER 096A CHOPLOOP 0965 CHOPNAME 09E1 CLOSEPARMS
 FDED COUT 09E2 CREFNUM FD8E CROUT 09CE DEPTH
 0964 DESTPTR 09AA DIRDONE 80 DIRNAME 084D DONE
 4C ENDOFFILE 09D2 ENTPERBLK 82 ENTPTR 09D1 ENTRYLEN
 081E EXIT 0962 EXTCNT 092F EXTENDNAME 0942 EXTLOOP
 BEF5 GETBUFR 0977 GETNEXT 09E8 GETPPARMS 0878 HITDIREND
 09D6 IOBUF 0845 ITSADIR 0831 LOOP 09E5 MARK
 CC MLICLOSE C7 MLIGETPFX C8 MLIOPEN BF00 MLI
 CA MLIREAD CE MLISETMARK 0BEB NAMEBUFFER 0848 NEXTENTRY
 24 OENTBLK 23 OENTLEN 0879 OPENDIR 08B2 OPENDONE
 09D4 OPENNAME 09D3 OPENPARMS 09D8 OREFNUM 00 OTYPE
 FDDA PRBYTE 09AC PRINTENTRY 09C2 PRNTLOOP 0829 READDIR1
 081F READDIR 098C READNEXT 09D9 READPARMS 08C9 RECURSDIR
 08F7 REOPENED ?09DD REQAMT ?09DF RETAMT 09DA RREFNUM
 09E3 SETMPARMS A0 SPACE 09BB SPCDONE 09B3 SPCLOOP
 0963 SRCPTR 09E4 SREFNUM ?0800 START 09CF THISBENTRY
 09D0 THISBLOCK 08BA VISITDIR 08B3 VISITFILE
** SUCCESSFUL ASSEMBLY := NO ERRORS
** ASSEMBLER CREATED ON 15-JAN-84 21:28
** TOTAL LINES ASSEMBLED 544
** FREE SPACE PAGE COUNT 81

Further Reference
• ProDOS 8 Technical Reference Manual
• AppleShare Programmer’s Guide to the Apple IIGS

ProDOS 8
#18: /RAM Memory Map 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#18: /RAM Memory Map

Revised by: Matt Deatherage November 1988
Written by: Pete McDonald December 1986

This Technical Note describes the block to actual memory location mapping of /RAM.

$70-$7F

$68-$6F

$60-$67

$4E-$5C

$3D-$4C

$2C-$3B

$1B-$2A

$0A-$19

$5D-$5F

$4D

$3C

$2B

$1A

$09

$08

$02

$03

$E000-$FFFF

$D000-$DFFF

$D000-$DFFF

$A200-$BFFF

$8200-$A1FF

$6200-$81FF

$4200-$61FF

$2200-$41FF

$1A00-$1FFF

$1800-$19FF

$1600-$17FF

$1400-$15FF

$1200-$13FF

$1000-$11FF

$2000-$21FF

$0E00-$0FFF

Bitmap (synthesized)

Blocks Address Range

(Bank 2)
(Bank 1)

Notes:
1. Blocks 0, 1, 4, 5, 6, and 7 do not exist.
2. Block $7F contains the Reset, IRQ, and NMI vectors and is normally marked as used.
3. The memory from $0C00 – $0DFF is a general purpose buffer used by the /RAM driver.

Apple II Technical Notes

2 of 1 Developer Technical Support

ProDOS 8
#19: File Auxiliary Type Assignment 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#19: File Auxiliary Type Assignment

Revised by: Matt Deatherage November 1988
Written by: Matt Deatherage May 1988

This Technical Note describes file auxiliary type assignments.

The information in a ProDOS file auxiliary type field depends upon its primary file type. For
example, the auxiliary type field for a text file (TXT, $04) is defined as the record length of the
file if it is a random-access file, or zero if it is a sequential file. The auxiliary type field for an
AppleWorks™ file contains information about the case of letters in the filename (see Apple II
File Type Notes, File Types $19, $1A, and $1B). The auxiliary type field for a binary file (BIN,
$06) contains the loading address of the file, if one exists.

Auxiliary types are now used to extend the limit of 256 file types in ProDOS. Specific auxiliary
types can be assigned to generic application file types. For example, if you need a file type for
your word-processing program, Apple might assign you an auxiliary type for the generic file
type of Apple II word processor file, if it is appropriate.

An application can determine if a given file belongs to it by checking the file type and the
auxiliary type in the directory entry. Other programming considerations include the following:

1. If your program displays auxiliary type information, it should include all auxiliary
types, not just selected ones. Try to display the auxiliary type information stored
in the directory entry, just as you would display hex codes for file types for which
you do not have a more descriptive message to display.

2. Programs should not store information in an undefined auxiliary type field.
Storing the record length in a text file is fine, and it is even encouraged, but
storing the number of words in a text file in that text file’s auxiliary type field
might cause problems for those programs which expect to find a record length
there. Similarly, storing data in the auxiliary type field will cause problems if
your data matches an auxiliary type which is assigned. To avoid these problems,
only store defined items in a file’s auxiliary type field. If you do not know of a
definition for a particular file type’s associated auxiliary type, do not store
anything in its field.

To request a file type and auxiliary type, please send Apple II Developer Technical Support a
description of your proposed file format, along with a justification for not using existing file and
auxiliary types. We will publish this information publicly, unless you specifically prohibit it,

Apple II Technical Notes

2 of 1 Developer Technical Support

since we feel doing so enables the exchange of data for those applications who choose to support
other file formats.

Further Reference
• ProDOS 8 Technical Reference Manual
• ProDOS 16 Technical Reference

ProDOS 8
#20: Mirrored Devices and SmartPort 1 of 2

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#20: Mirrored Devices and SmartPort

Revised by: Matt Deatherage November 1988
Written by: Matt Deatherage May 1988

This Technical Note describes how ProDOS 8 reacts when more than two SmartPort devices are
connected, how applications using direct device access should behave, and other related issues.
This Note supersedes Section 6.3.1 of the ProDOS 8 Technical Reference Manual.

Although SmartPort theoretically can handle up to 127 devices connected to a single interface (in
practice, electrical considerations curtail this considerably), ProDOS 8 can handle only two
devices per slot. This is because ProDOS uses bit 7 of its unit_number is used to distinguish
drives from each other, and a single bit cannot distinguish more than two devices.

When it boots, ProDOS checks each interface card (or firmware equivalent in the IIc or IIGS) for
the ProDOS block-device signature bytes ($Cn01 = $20, $Cn03 = $00, and $Cn05 = $03), so it
can install the appropriate device-driver address in the system global page. If the signature bytes
match, ProDOS then checks the SmartPort signature byte ($Cn07 = $00), and if that byte
matches and the interface is in slot 5 (or located at $C500 in the IIc or IIGS), ProDOS does a
SmartPort STATUS call to determine how many devices are connected to the interface. If only
one or two drives are connected to the interface, ProDOS installs its block-device entry point (the
contents of $CnFF added to $Cn00) in the device-driver vector table, which starts at $BF10. In
this particular instance, ProDOS would put the vector at $BF1A for slot 5, drive 1, and if two
drives were found, at $BF2A for slot 5, drive 2 .

If the interface is in slot 5 and more than two devices are connected, ProDOS copies the same
block-device entry point that it uses for slot 5, drives 1 and 2 in the device driver table entry for
slot 2, drive 1, and if four drives are connected, for slot 2, drive 2. Further in the boot process, if
ProDOS finds the interface of a block device in slot 2 (not possible on a IIc), it replaces the
vectors copied from slot 5 with the proper device-driver vectors for slot 2; this is the reason
mirroring is disabled if there is a ProDOS device in slot 2. Note that non-ProDOS devices (i.e,
serial cards and ports, etc.) do not have vectors installed in the ProDOS device-driver table, so
they do not interfere with mirroring.

When ProDOS makes an MLI call with the unit_number of a mirrored device, it sets up the
call to the device driver then goes through the vector in the device-driver table starting at $BF00.
When the block device driver (located on the interface card or in the firmware) gets this MLI
call, it checks the unit number which is stored at $43 and verifies if the slot number (bits four,
five, and six) is the same as that of the interface. If it is not, the ProDOS block device driver of

Apple II Technical Notes

2 of 2 Developer Technical Support

the interface realizes it is dealing with a mirrored device, internally adds three to the slot number
and two to the drive number, then processes it, returning the desired information or data to
ProDOS.

If an application must make direct device-driver calls (something which is not encouraged), it
should first check devlst (starting at $BF32) to verify that the unit_number is from an
active device. In addition, the application should mask off or ignore the low nibble of entries in
devlst and know that one less than the number of devices in the list is stored at $BF31
(devcnt). The application then should use the unit_number to get the proper device-driver
vector from the ProDOS global page; the application should not construct the vector itself,
because this vector would be invalid for a mirrored device.

The following code fragment correctly illustrates this technique. It is written in 6502 assembly
language and assumes the unit_number is in the accumulator.

devcnt equ $BF31
devlst equ $BF32
devadr equ $BF10
devget sta unitno ; store for later compare instruction

ldx devcnt ; get count-1 from $BF31
devloop lda devlst,x ; get entry in list

and #$F0 ; mask off low byte
devcomp cmp unitno ; compare to the unit_number we filled
in

beq goodnum ;
dex
bpl devloop ; loop again if still less than $80
bmi badunitno ; error: bad unit number

goodnum lda unitno ; get good copy of unit_number
lsr a ; divide it by 8
lsr a ; (not sixteen because devadr entries

are
lsr a ; two bytes wide)
tax
lda devadr,x ; low byte of device driver address
sta addr
lda devadr+1,x ; high byte of device driver address
sta addr+1
rts

addr dw 0 ; address will be filled in here by
goodnum
unitno dfb 0 ; unit number storage

Similarly, applications which construct firmware entry points from user input to “slot and drive”
questions will not work with mirrored devices. If an application wishes to issue firmware-
specific calls to a device, it should look at the high byte of the device-driver table entry for that
device to obtain the proper place to check firmware ID bytes. In the sample code above, the high
byte would be returned in addr+1. For devices mirrored to slot 2 from slot 5, this technique will
return $C5, and ID bytes would then be checked (since they should always be checked before
making device-specific calls) in the $C500 space. Applications ignoring this technique will
incorrectly check the $C200 space.

Further Reference
• ProDOS 8 Technical Reference Manual

November 1988

ProDOS 8
#20: Mirrored Devices and SmartPort 3 of 2

• ProDOS 8 Technical Note #21, Identifying ProDOS Devices

ProDOS 8
#21: Identifying ProDOS Devices 1 of 8

Apple II
Technical Notes

Developer Technical Support

®

ProDOS 8
#21: Identifying ProDOS Devices

Revised by: Dave Lyons & Matt Deatherage March 1990
Written by: Matt Deatherage & Dan Strnad November 1988

This Technical Note describes how to identify ProDOS devices and their characteristics given
the ProDOS unit number. This scheme should only be used under ProDOS 8.
Changes since January 1990: Modified AppleTalk call code for compatibility with ProDOS 8
versions earlier than 1.5 and network-booted version 1.4.

There are various reasons why an application would want to identify ProDOS devices. Although
ProDOS itself takes great pains to treat all devices equally, it has internal drivers for two types of
devices: Disk II drives and the /RAM drive provided on 128K or greater machines. Because all
devices really are not equal (i.e., some cannot format while others are read-only, etc.), a
developer may need to know how to identify a ProDOS device.

Although the question of how much identification is subjective for each developer, ProDOS 8
offers a fair level of identification; the only devices which cannot be conclusively identified are
those devices with RAM-based drivers, and they could be anything. The vast majority of
ProDOS devices can be identified, however, so you could prompt the user to insert a disk in
UniDisk 3.5 #2, instead of Slot 2, Drive 2, which could be confusing if the user has a IIc or IIGS.

Note that for the majority of applications, this level of identification is unnecessary. Most
applications simply prompt the user to insert a disk by its name, and the user can place it in any
drive which is capable of working with the media of the disk. You should avoid requiring a
certain disk to be in a specific drive since doing so defeats much of the device-independence
which gives ProDOS 8 its strength.

When you do need to identify a device (i.e., if you need to format media in a Disk II or /RAM
device), however, the process is fairly straightforward. This process consists of a series of tests,
any one of which could end with a conclusive device identification. It is not possible to look at a
single ID byte to determine a particular device type. You may determine rather quickly that a
device is a SmartPort device, or you may go all the way through the procedure to identify a third-
party network device. For those developers who absolutely must identify devices, DTS presents
the following discussion.

Isn’t There Some Kind of “ID Nibble?”

Apple II Technical Notes

ProDOS 8
2 of 8 #21: Identifying ProDOS Devices

ProDOS 8 does not support an “ID nibble.” Section 5.2.4 of the ProDOS 8 Technical Reference
Manual states that the low nibble of each unit number in the device list “is a device
identification: 0 = Disk II, 4 = Profile, $F = /RAM.”

Developer Technical Support March 1990

ProDOS 8
#21: Identifying ProDOS Devices 3 of 8

When ProDOS 8 finds a “smart” ProDOS block device while doing its search of the slots and
ports, it copies the high nibble of $CnFE (where n is the slot number) into the low nibble of the
unit number in the global page. The low nibble then has the following definition:

Bit 3: Medium is removable
Bit 2: Device is interruptible
Bit 1-0: Number of volumes on the device (minus one)

As you can see, it is quite easy for the second definition to produce one of the original values
(e.g., 0, 4, or $F) in the same nibble for completely different reasons. You should ignore the low
nibble in the unit number in the global page when identifying devices since the first definition is
insufficient to uniquely identify devices and the second definition contains no information to
specifically identify devices. Once you do identify a ProDOS block device, however, you may
look at $CnFE to obtain the information in the second definition above, as well as information on
reading, writing, formatting, and status availability.

When identifying ProDOS devices, start with a list of unit numbers for all currently installed disk
devices. As you progress through the identification process, you identify some devices
immediately, while others must wait until the end of the process for identification.

Starting with the Unit Number

ProDOS unit numbers (unit_number) are bytes where the bits are arranged in the pattern
DSSS0000, where D = 0 for drive one and D = 1 for drive two, SSS is a three-bit integer with
values from one through seven indicating the device slot number (zero is not a valid slot
number), and the low nibble is ignored.

To obtain a list of the unit numbers for all currently installed ProDOS disk devices, you can
perform a ProDOS MLI ON_LINE call with a unit number of $00. This call returns a unit
number and a volume name for every device in the device list. ProDOS stores the length of the
volume name in the low nibble of the unit number which ON_LINE returns; if an error occurs,
the low nibble contains $0 and the byte immediately following the unit number contains an error
code. For more information on the ON_LINE call, see section 4.4.6 of the ProDOS 8 Technical
Reference Manual. A more detailed discussion of the error codes follows later in this Note.

To identify the devices in the device list, you need to know in which physical slot the hardware
resides, so you can look at the slot I/O ROM space and check the device’s identification bytes.
Note that the slot-number portion of the unit number does not always represent the physical slot
of the device, rather, it sometimes represents the logical slot where you can find the address of
the device’s driver entry point in the ProDOS global page. For example, if a SmartPort device
interface in slot 5 has more than two connected devices, the third and fourth devices are mapped
to slot 2; this mapping gives these two devices unit numbers of $20 and $A0 respectively, but the
device’s driver entry point is still in the $C5xx address space.

ProDOS 8 Technical Note #20, Mirrored Devices and SmartPort, discusses this kind of mapping
in detail. It also presents a code example which gives you the correct device-driver entry point

Apple II Technical Notes

ProDOS 8
4 of 8 #21: Identifying ProDOS Devices

(from the global page) given the unit number as input. Here is the code example from that Note
for your benefit. It assumes the unit_number is in the accumulator.

Developer Technical Support March 1990

ProDOS 8
#21: Identifying ProDOS Devices 5 of 8

devcnt equ $BF31
devlst equ $BF32
devadr equ $BF10
devget sta unitno ; store for later compare instruction

ldx devcnt ; get count-1 from $BF31
devloop lda devlst,x ; get entry in list

and #$F0 ; mask off low nibble
devcomp cmp unitno ; compare to the unit_number we filled in

beq goodnum ;
dex
bpl devloop ; loop again if still less than $80
bmi badunitno ; error: bad unit number

goodnum lda unitno ; get good copy of unit_number
lsr a ; divide it by 8
lsr a ; (not sixteen because devadr entries are
lsr a ; two bytes wide)
tax
lda devadr,x ; low byte of device driver address
sta addr
lda devadr+1,x ; high byte of device driver address
sta addr+1
rts

addr dw 0 ; address will be filled in here by goodnum
unitno dfb 0 ; unit number storage

Warning: Attempting to construct the device-driver entry point from the unit number
is very dangerous. Always use the technique presented above.

Network Volumes

AppleTalk volumes present a special problem to some developers since they appear as “phantom
devices,” or devices which do not always have a device driver installed in the ProDOS global
page. Fortunately, the ProDOS Filing Interface (PFI) to AppleTalk provides a way to identify
network volumes through an MLI call. The ProDOS Filing Interface call FIListSessions is
used to retrieve a list of the current sessions being maintained through PFI and any volumes
mounted for those sessions.

In the following example, note the check for ProDOS 8 version 1.5 or higher, and the simulation
of a bad command error under older versions (the $42 call under ProDOS 8 version 1.4 always
crashes if ProDOS was launched from a local disk):

Network LDA #$04 ;require at least ProDOS 8 1.4
CMP $BFFF ;KVERSION (ProDOS 8 version)
BEQ MoreNetwork ;have to check further
LDA #$01 ;simulate bad command error
BCS ERROR ;if 3 or less, no possibility of network
BCC NetCall ;otherwise, try the network call

MoreNetwork LDA $BF02 ;high byte of the MLI entry point
AND #$F0 ;strip off the low nibble
CMP #$C0 ;is the entry into the $Cn00 space?
BEQ NetCall ;yes, so try AppleTalk
LDA #$01
SEC
BCS ERROR ;simulate bad command error

NetCall JSR $BF00 ;ProDOS MLI

Apple II Technical Notes

ProDOS 8
6 of 8 #21: Identifying ProDOS Devices

DFB $42 ;AppleTalk command number
DW ParamAddr ;Address of Parameter Table
BCS ERROR ;error occurred

ParamAddr DFB $00 ;Async Flag (0 means synchronous only)
;note there is no parameter count

DFB $2F ;command for FIListSessions
DW $0000 ;AppleTalk Result Code returned here
DW BufLength ;length of the buffer supplied
DW BufPointer ;low word of pointer to buffer
DW $0000 ;high word of pointer to buffer

;(THIS WILL NOT BE ZERO IF THE BUFFER IS
;NOT IN BANK ZERO!)

DFB $00 ;Number of entries returned here

If the FIListSessions call fails with a bad command error ($01), then AppleShare is not
installed; therefore, there are no networks volumes mounted. If there is a network error, the
accumulator contains $88 (Network Error), and the result code in the parameter block contains
the specific error code. The list of current sessions is placed into the buffer (at the address
BufPointer in the example above), but if the buffer is not large enough to hold the list, it
retains the maximum number of current sessions possible and returns an error with a result code
of $0A0B (Buffer Too Small). The buffer format is as follows:

SesnRef DFB $00 ;Sessions Reference number (result)
UnitNum DFB $00 ;Unit Number (result)
VolName DS 28 ;28 byte space for Volume Name

;(starts with a length byte)
VolumeID DW $0000 ;Volume ID (result)

This list is repeated for every volume mounted for each session (the number is placed into the
last byte of the parameter list you passed to the ProDOS MLI). For example, if there are two
volumes mounted for session one, then session one is listed two times. The UnitNum field
contains the slot and drive number in unit-number format, and note that bit zero of this byte is set
if the volume is a user volume (i.e., it contains a special “users” folder). This distinction is
unimportant for identifying a ProDOS device as a network pseudo-device, but it is necessary for
applications which need to know the location of the user volume. Note that if you mount two
servers or more with each having its own user volume, the user volume found first in the list
(scanned top to bottom) returned by FIListSessions specifies the user volume that an
application should use. See the AppleShare Programmer’s Guide for the Apple IIGS for more
information on programming for network volumes.

If you keep a list of all unit numbers returned by the ON_LINE call and mark each one
“identified” as you identify it, keep in mind that the unit numbers returned by
FIListSessions and ON_LINE have different low nibbles which should be masked off
before you make any comparisons.

Note: You should mark the network volumes as identified and not try to identify them
further with the following methods.

What Slot is it Really In?

Developer Technical Support March 1990

ProDOS 8
#21: Identifying ProDOS Devices 7 of 8

Once you have the address of the device driver’s entry point and know that the device is not a
network pseudo-device, you can determine in what physical slot the device resides. If the high
byte of the device driver’s entry point is of the form $Cn, then n is the physical slot number of
the device. A SmartPort device mirrored to slot 2 has a device driver address of $C5xx, giving 5
as the physical slot number.

Apple II Technical Notes

ProDOS 8
8 of 8 #21: Identifying ProDOS Devices

If the high byte of the device driver entry point is not of the form $Cn, then there are three other
possibilities:

• The device is a Disk II with driver code inside ProDOS.
• The device is either /RAM with driver code inside ProDOS or a third-party

auxiliary-slot RAM disk device with driver code installed somewhere in memory.
• The device is not a RAM disk but has a RAM-based device driver, like a third-

party network device.

Auxiliary-slot RAM disks are identified by convention. Any device in slot 3, drive 2 (unit
number $B0) is assumed to be an auxiliary-slot RAM disk since ProDOS 8 does not recognize
any card which is not an 80-column card in slot 3 (see ProDOS 8 Technical Note #15, How
ProDOS 8 Treats Slot 3). There is a chance that some other kind of device could be installed
with unit number $B0, but it is not likely.

To identify various kinds of auxiliary-slot RAM disks, you must obtain the unit number from the
ProDOS global page. The list of unit numbers starts at $BF32 (DEVLST) and is preceded by the
number of unit numbers minus one (DEVCNT, at $BF31). You should search through this list
until you find a unit number in the form $Bx; if the unit number is $B3, $B7, $BB, or $BF, you
can assume the device to be an auxiliary-slot RAM disk which uses the auxiliary 64K bank of
memory present in a 128K Apple IIe or IIc, or a IIGS. If the unit number is one of the four listed
above, you must remove this device to safely access memory in the auxiliary 64K bank, but if
the unit number is not one of the four listed above, you can assume the device to be an auxiliary-
slot RAM disk which does not use the normal bank of auxiliary memory. (Some third-party
auxiliary-slot cards contain more than one 64K auxiliary bank; the normal use of this memory is
as a RAM disk. If the RAM-based driver for this kind of card does not use the normal auxiliary
64K bank for storage, it should have a unit number other than one of the four listed above.) If
the unit number is not one of the four listed above, you may safely access the auxiliary bank of
memory without first removing this device.

Section 5.2.2.3 of the ProDOS 8 Technical Reference Manual contains a routine which
disconnects the appropriate RAM disk devices in slot 3, drive 2, without removing those drivers
which do not use that bank, to allow use of the auxiliary 64K bank.

Note: Previous information from Apple indicated that /RAM could be distinguished
from third-party RAM disks by a driver address of $FF00. Although the address
has not changed, some third-party drivers may have addresses of $FF00 as well,
although this is not supported. /RAM always has a driver address of $FF00 and
unit number $BF, although any third-party RAM disk could install itself with
similar attributes.

For Disk II devices, the three-bit slot number portion of the unit_number is always the
physical slot number. Disk II devices can never be mirrored to another slot (the Disk II driver
does not support it); therefore, it is in the physical slot represented in the unit number which
ProDOS assigns when it boots.

Developer Technical Support March 1990

ProDOS 8
#21: Identifying ProDOS Devices 9 of 8

If the high byte of the device driver’s entry point is not of the form $Cn, then you should assume
that the slot number is the value SSS in the unit number (this is equivalent to assuming the
device is a Disk II) for the next step, which is checking the I/O space for identification bytes.

Apple II Technical Notes

ProDOS 8
10 of 8 #21: Identifying ProDOS Devices

What to Do With the Slot Number

Once you have the slot number, you can look at the slot I/O ROM space to determine the kind of
device it is. As described in the ProDOS 8 Technical Reference Manual, ProDOS looks for the
following ID bytes in ROM to determine if a ProDOS device is in a slot:

$Cn01 = $20
$Cn03 = $00
$Cn05 = $03

If you use the slot number, n, you obtained above, and the three values listed above are not
present, then the device has a RAM-based driver and cannot further be identified.

If the three values previously discussed are present, then examination of $CnFF gives more
information. If $CnFF = $00, the device is a Disk II. If $CnFF is any value other than $00 or
$FF ($FF signifies a 13-sector Disk II, which ProDOS does not support), the device is a ProDOS
block device.

For ProDOS block devices, the byte at $CnFE contains several flags which further identify the
device; these flags are discussed in section 6.3.1 of the ProDOS 8 Technical Reference Manual.

SmartPort Devices

Many of Apple’s ProDOS block devices follow the SmartPort firmware interface. Through
SmartPort, you can further identify devices. Existing SmartPort devices include SCSI hard
disks, 3.5” disk drives and CD-ROM drives, with many more possible device types.

If $Cn07 = $00, then the device is a SmartPort device, and you can then make a SmartPort call to
get more information about the device, including a device type and subtype. The SmartPort
entry point is three bytes beyond the ProDOS block device entry point, which you already
determined. The method for making SmartPort calls is outlined in the Apple IIc Technical
Reference Manual, Second Edition and the Apple IIGS Firmware Reference.

The most useful SmartPort call to make for device identification is the STATUS call with
statcode = 3 for Return Device Information Block (DIB). This call returns the ASCII name
of the device, a device type and subtype, as well as the size of the device. Some SmartPort
device types and subtypes are listed in the referenced manuals, with a more complete list located
in the Apple IIGS Firmware Reference. A list containing SmartPort device types only is provided
in SmartPort Technical Note #4, SmartPort Device Types.

Developer Technical Support March 1990

ProDOS 8
#21: Identifying ProDOS Devices 11 of 8

RAM-Based Drivers

One fork of the identification tree comes to an end at this point. If the high byte of the device
driver entry point was not $Cn and the device was not /RAM, you assumed it was a Disk II and
used the slot number portion of the unit number to examine the slot ROM space. If the ROM
space for that slot number does not match the three ProDOS block device ID bytes, it cannot be a
Disk II. Having ruled out other possibilities, it must be a device installed after ProDOS finished
building its device table. Perhaps it is a third-party RAM disk driver or maybe a driver for an
older card which does not match the ProDOS block device ID bytes.

Whatever the function of the driver, you can identify it no further. It quite literally could be any
kind of device at all, and with neither slot ROM space to identify nor a standard location to
compare the device driver entry point against, the best you can do is consider it a “generic
device” and go on.

But Is It Connected and Can I Read From It?

Just because a ProDOS device is in the table does not mean it is ready to be used. There is
always the possibility that the drive has no media in it. Back in the beginning, you made an
ON_LINE call with a unit number of $00. If the volume name of a disk in that device could not
be read, or another error occurred, ProDOS 8 would return the error code in the ON_LINE buffer
immediately following the unit number. Those errors possible include:

$27 I/O error
$28 No Device Connected
$2B Write Protected
$2F Device off-line
$45 Volume directory not found
$52 Not a ProDOS disk
$55 Volume Control Block full
$56 Bad buffer address
$57 Duplicate volume on-line

Note that error $2F is not listed in the ProDOS 8 Technical Reference Manual.

By convention, you interpret I/O error to mean the disk in the drive is either damaged or blank
(not formatted). You interpret Device off-line to mean that there is no disk in the drive. You
interpret No Device Connected to mean the drive really does not exist (for example, asking for
status on a second Disk II when only one is connected).

If no error occurred for a unit number in the ON_LINE call (the low nibble of the unit number is
not zero), the volume name of the disk in the drive follows the unit number.

Apple II Technical Notes

ProDOS 8
12 of 8 #21: Identifying ProDOS Devices

Things To Avoid

The ProDOS device-level STATUS call generally returns the number of blocks on a device.
Applications should not try to identify 3.5” drives by doing a ProDOS or SmartPort STATUS
call and comparing the number of blocks to 800 or 1,600. The correct way to identify a 3.5”
drive is by the Type field in a SmartPort STATUS call.

Don’t assume the characteristics of a device just because it is in a certain slot. For example, be
prepared to deal with 5.25” disk drives in slots other than 6. Don’t assume that slot 6 is
associated with block devices at all—there could be a printer card installed.

Avoid reinstalling /RAM when your application finds it removed. If you remove /RAM, you
should reinstall it when you’re done with the extra memory; however, if your application finds
/RAM already gone, you do not have the right to just reinstall it. A driver of some kind may be
installed in auxiliary memory, and arbitrary reinstallation of /RAM could bring the system down.

Further Reference
• ProDOS 8 Technical Reference Manual
• AppleShare Programmer’s Guide for the Apple IIGS (APDA)
• ProDOS 8 Technical Note #15, How ProDOS 8 Treats Slot 3
• ProDOS 8 Technical Note #20, Mirrored Devices and SmartPort
• ProDOS 8 Technical Note #23, ProDOS 8 Changes and Minutia
• ProDOS 8 Technical Note #26, Polite Use of Auxiliary Memory

ProDOS 8
#22: Don’t Put Parameter Blocks on Zero Page 1 of 1

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#22: Don’t Put Parameter Blocks on Zero Page

Written by: Dave Lyons July 1989

Putting ProDOS 8 parameter blocks on zero page ($00-$FF) is not recommended.

It is not a good idea to put the parameter blocks for ProDOS 8 MLI calls on zero page. This is
not forbidden by the ProDOS 8 Technical Reference Manual, but then again, it also doesn’t tell
you not to put parameter blocks in ROM, in the $C0xx soft switch area, or just below the active
part of the stack.

If you do put MLI parameter blocks on zero page, your application may break in the future.

If your parameter block comes between $80 and $FF, it won’t work with AppleShare installed.

Further Reference
• ProDOS 8 Technical Reference Manual

ProDOS 8
#23: ProDOS 8 Changes and Minutia 1 of 7

Apple II
Technical Notes

Developer Technical Support

®

ProDOS 8
#23: ProDOS 8 Changes and Minutia
Revised by: Matt Deatherage May 1992
Written by: Matt Deatherage July 1989

This Technical Note documents the change history of ProDOS 8 through V2.0.1, and it supersedes
the information on this topic in the ProDOS 8 Technical Reference Manual and the ProDOS 8
Update.
Changes since September 1990: Updated to include ProDOS 8 version 2.0.1 and its known
bugs. Replaced APDA references with Resource Central .

Changes? You’re kidding.

No. One of the side effects of evolving technology is that eventually little things (like the disk
operating system) have to change to support the new technologies. Every time Apple changes
ProDOS 8, the manuals can’t be reprinted. For one thing, it takes a long time to turn out a manual,
by which time there’s often a new version done which the new manual doesn’t cover. For another
thing, programmers and developers don’t tend to purchase revised manuals (our informal research
shows that more people have up-to-date Apple /// RPS documentation than have up-to-date Apple
IIc documentation—and this was done before the Apple IIc Plus was released…).

So this Note explains what has changed between ProDOS 8 V1.0 and the current release, V2.0.1,
which began shipping with Apple IIGS System Software 6.0. Table 1 shows what versions of
ProDOS 8 existing documentation covers.

Version
Document Number
ProDOS 8 Technical Reference Manual 1.1.1
ProDOS 8 Update 1.4
AppleShare Programmer’s Guide to the Apple IIGS 1.5

Table 1–ProDOS 8 Documentation

ProDOS 1.0

This was the first release of ProDOS, which was so unique it didn’t even have to be called ProDOS
8 to distinguish it from ProDOS 16. If you have documentation that predates ProDOS 1.0, you
should seek professional help from Resource Central at the address listed in Technical Note #0.

Apple II Technical Notes

ProDOS 8
2 of 7 #23: ProDOS 8 Changes and Minutia

ProDOS 1.0.1

• Fixed a bug in the STATUS call which affected testing for the write-protected
condition.

ProDOS 1.0.2

• Changed instructions used in interrupt entry routines on the global page so the
accumulator would not be destroyed.

• Fixed a bug in the Disk II core routines so the motor would shut off after
recalibration on an error.

ProDOS 1.1

• Changed the internal MLI layout for future expansibility and maintenance.
• Modified machine ID routines to identify IIc and enhanced IIe ROMs.
• Removed code that allowed ProDOS to boot on 48K machines.
• Removed the check for the ProDOS version number from the OPEN routine.
• Incremented KVERSION (the ProDOS Kernel version) on the global page.
• Modified the loader routines to reflect the presence of any 80-column card

following the established protocol (see ProDOS 8 Technical Note #15, How
ProDOS 8 Treats Slot 3). Also, at this time, added code to allow slot 3 to be
enabled on a IIe if an 80-column card following the protocol was found.

• Added code to turn off all disk motor phases prior to seeking a track in the Disk II
driver.

• Fixed a bug to prevent accesses to /RAM after it had been removed from the device
list.

• Reduced the size of the /RAM device by one block to protect interrupt vectors in the
auxiliary language card. The correct vectors are installed at boot time.

ProDOS 1.1.1

• Fixed a Disk II driver bug for mapping into drive 1.
• Modified machine ID routines to give precedence to identifiable 80-column cards in

slot 3.

ProDOS 8 1.2

• Changed the name from ProDOS to ProDOS 8 to avoid confusion with ProDOS
16, which, again, this Note does not discuss.

• Introduced the clock driver for the Apple IIGS. The machine identification code was
changed to indicate the presence of the clock on the IIGS.

• Added preliminary network support by adding the network call and preliminary
network driver space.

• Fixed a bug in returning errors from calls to the RAM disk. Changed the RAM
disk driver to return values of zero on reads and ignore writes to blocks zero, one,
four, five, six, and seven, which are not accessible as storage in the driver’s design.

• Added a new system error ($C) for errors when deallocating blocks from a tree file.
• Fixed a bug in zeroing a Volume Control Block (VCB) when trying to reallocate a

previously used VCB.
• Modified the ProDOS 8 loader code to automatically install up to four drives in slot

5 if a SmartPort device is found. Removed the code to always leave interrupts
disabled, which leaves the state of the interrupt flag at boot time unchanged while
ProDOS 8 loads.

Developer Technical Support May 1992

ProDOS 8
#23: ProDOS 8 Changes and Minutia 3 of 7

• Changed the MLI entry to disable interrupts until after the MLIACTV flag is set and
other ProDOS parameters are initialized.

• Modified the QUIT code to allow the Delete key to function the same as the left
arrow key. Also fixed a bug so screen holes would not be trashed in 80-column
mode. Crunched code to allow soft switch accesses to force 40-column text mode.
Fixed a bug so the dispatcher would not trash the screen when executed with a NIL
prefix.

• Modified the ONLINE call so that it could be made to a device that had just been
removed from the device list by the standard protocol. Previous to this change, a
VCB for the removed device was left, reducing the number of on-line volumes by
one for each such device. From this point on, removing a device should be followed
by an ONLINE call to the device just removed. The call returns error $28 (No
Device Connected), but deallocates the VCB.

• Added a spurious interrupt handler to allow up to 255 unclaimed interrupts before
system death.

• Removed the code which invoked low-resolution graphics on system death—it had
not worked well and the space was needed. The system had previously had the
ability to display “INSERT SYSTEM DISK AND RESTART” without also
displaying “-ERR xx”, which was removed at this point for space reasons since
the system wasn’t using it (and hopefully you weren’t, either, since it wasn’t
documented).

• Changed MLIACTV to use an ASL instead of an LSR to turn “off” the flag.
• Changed the OPEN call to correctly return error $4B (Unsupported Storage

Type) instead of error $4A (incompatible file format for this version) when
attempting to open a file with an unrecognized storage type.

• Fixed an obscure bug involving READ in Newline mode. If the requested number of
bytes was greater than $FF, and the number of bytes in the file after the newline
character was read was a multiple of $100, then the number of bytes reported
transferred by ProDOS was equal to the correct number of transferred bytes plus
$100.

• Starting with V1.2 on an Apple IIGS, stopped switching slot 3 ROM space and left
the determination of whether the slot or the port was enabled to the Control Panel;
however, there was a bug in this implementation which was fixed in V1.7 and
described in ProDOS 8 Technical Note #15, How ProDOS 8 Treats Slot 3.

• Updated the slot-based clock driver’s year table through 1991.
• Added a feature which allows ProDOS 8 to search for a file named ATINIT in the

boot volume’s root directory, to load and execute it, then to proceed normally with
the boot process by loading the first .SYSTEM file. No error occurs if the ATINIT
file is not found, but any other error condition (including the file existing and not
having file type $E2) causes a fatal error.

• Changed loader code so ProDOS 8 could be loaded by ProDOS 16 without
automatically executing the ATINIT and the first .SYSTEM file.

• Changed the device search process in the ProDOS 8 loader so SmartPort devices
are only installed if they actually exist, and Disk IIs are placed with lowest priority
in the device list so they are scanned last.

• Forced Super Hi-Res off on an Apple IIGS when a fatal error occurs. (Actually, this
did not work, but it was fixed in V1.7.)

• Inserted a patch to fix a bug in the first IIGS ROM that caused internal $Cn00
ROM space to be left mapped in if SmartPort failed to boot.

Apple II Technical Notes

ProDOS 8
4 of 7 #23: ProDOS 8 Changes and Minutia

ProDOS 8 1.3

Warning: This is not a stable version of ProDOS due to an illegal 65C02 instruction
which was added. This version can damage disks if used with a 6502
processor.

• Changed the code that resets phase lines for Disk IIs so phase clearing is done with
a load instead of a store, since stores to even numbered locations cause bus
contention, which is major uncool. Changed the routine to force access to all eight
even locations, which not only clears the phases, but also forces read mode, first
drive, and motor off. DOS used to do this; ProDOS had not been doing it. If L7
had been left on when the Disk II driver was called and it checked write-protect with
L6 high, write mode was enabled. Forcing read mode leaves less to chance.

• Changed deallocation of index blocks so index blocks are not zeroed, allowing the
use of file recovery utilities. Instead, index blocks are “flipped” (the first 256 bytes
are exchanged with the last 256 bytes).

• Since the UniDisk 3.5 interface card for the][+ and IIe does not set up its device
chain unless a ProDOS call is made to it, ProDOS STATUS calls are now made to
the device before SmartPort STATUS calls.

ProDOS 8 1.4

• Removed an illegal 65C02 instruction which was added in V1.3.
• Modified the Disk II driver so a routine that should only clear the phase lines only

clears the phase lines. Also clear Q7 to prevent inadvertent writes.

Warning: The AppleTalk command, which was added in version 1.5, is present as a
skeleton in this version. Unfortunately, it’s not a useful skeleton. It moves
a section of memory from a ProDOS location to another location and
transfers control, totally oblivious of the fact that there is no code at this
address.

Even more unfortunate, the server software that ships with the Apple IIe
Workstation Card is such that when the IIe is booted over the network with
that server software, it is version 1.4 (KVERSION = 4).

So if you boot version 1.4 from a local disk, making a $42 call is fatal. See
ProDOS 8 Technical Note #21, Identifying ProDOS Devices, for a reliable
way to identify AppleTalk volumes under ProDOS 8 version 1.4.

ProDOS 8 1.5

• ProDOS 8 1.5 is the first version to include network support through the ProDOS
Filing Interface (PFI) as part of ProDOS 16 or on the Apple IIe Workstation Card
without booting over the server (see the warning under version 1.4). Made many
changes to internal routines for PFI location and compatibility at this point.
Crunched and moved code for PFI booting and accessibility.

• Changed some strings to all uppercase internally for string comparisons.
• Removed the generic $42 AppleTalk call (the cause of the previous warning) which

was introduced in V1.2, as PFI gets called through the global page.
• Changed the ASL to clear the MLIACTV flag back to an LSR. This doesn’t make

nested levels of busy states possible, but always clears the flag before calling
interrupt handling routines that check MLIACTV as described in the ProDOS 8
Technical Reference Manual.

Developer Technical Support May 1992

ProDOS 8
#23: ProDOS 8 Changes and Minutia 5 of 7

• If an Escape key is detected in the keyboard buffer on an Apple IIc, it is removed.
This is friendly to the Apple IIc Plus, the ROM of which does not remove the
Escape key it uses to detect that the system should be booted at normal speed.

ProDOS 8 1.6

• Set up a parallel pointer to correct a PFI misinterpretation of an internal MLI
pointer.

ProDOS 8 1.7

• Made a change to ensure that ProDOS 8 counts the volume’s bitmap before
incrementing the number of free blocks. This fixed a bug where an uninitialized
location was being incremented and decremented, incorrectly reporting a Disk
Full error where none should have occurred.

• Changed the handling of slot 3 ROM space to that described in ProDOS 8
Technical Note #15, How ProDOS 8 Treats Slot 3.

• Changed code to permit the invisible bit of the access byte (bit 2) to be set by
applications.

ProDOS 8 1.8

• Fixed a bug introduced in V1.3. If an error occurs while calling DESTROY on a file,
the file is not deleted but the index blocks are not swapped back to normal position.
If a subsequent DESTROY of the same file succeeds, the volume’s integrity is
destroyed. Now ProDOS 8 marks the file as deleted, even if an error occurs, so any
other errors do not cause a subsequent MLI call to trash the volume. Note that
“undelete” utilities attempting to undelete such a file (one in which an error
occurred during the DESTROY) may trash the volume.

• Fixed the ONLINE call to ignore the unused low nibble of the unit_num
parameter when deciding how many bytes to zero in the application’s buffer. This
change fixes a bug which zeroed only the first 16 bytes of the caller’s buffer before
filling them if an ONLINE call was made with a unit_num of $0X, where X is
non-zero.

• When loading on an Apple IIGS, ProDOS 8 now sets the video mode so the 80-
column firmware is not active when the ProDOS 8 application gets control.

• Changed internal version checking between GS/OS and ProDOS 8. Note that
GS/OS and ProDOS 8 are still tied to each other—versions that didn’t come on the
same disk can’t be used together. The methods for checking versions were just
altered.

• Made the backward compatibility check when opening subdirectories inactive. The
test would always fail when opening a subdirectory with lowercase characters in the
name (as assigned by the ProDOS FST under GS/OS), so the check was removed.
Note that using earlier versions of ProDOS 8 with such disks causes errors when
trying to access files with such directories in their pathnames.

• Expanded the ProDOS 8 loader code to provide for more room for future
compatibility.

• On a IIGS, installs a patch into the GS/OS stack-based call vector so that anyone
calling GS/OS routines (like QDStartUp in ROM 03, for example) gets an
appropriate error instead of performing a JSL into the stratosphere.

Apple II Technical Notes

ProDOS 8
6 of 7 #23: ProDOS 8 Changes and Minutia

ProDOS 8 1.9

• New selector and dispatcher code was added for machines with 80 columns. The
old code is still present for machines without 80-column capability.

• Fixed two bugs involved in booting into a “.SYSTEM” program larger than 38K.
First, ProDOS 8 should be able to boot into a program as large as 39.75K, but was
returning an error if the “.SYSTEM” program was larger than 38K. Second, when
attempting to print the message “*** SYSTEM PROGRAM TOO LARGE ***”,
only one asterisk was printed. Both these bugs are fixed.

• No longer requires a “.SYSTEM” file when booting. If ProDOS 8 does not find a
“.SYSTEM” file and the enhanced selector and dispatcher code is installed,
ProDOS 8 executes a QUIT call.

• KVERSION is still $08.

ProDOS 8 v2.0.1

• ProDOS 8 now supports more than two SmartPort devices per slot by remapping
the third device and beyond to different slots. There’s still a limit of 14 devices
altogether, though.

• ProDOS 8 version 2.0.1 and later require a 65C02 microprocessor or equivalent;
you get RELOCATION/CONFIGURATION ERROR if you don’t have one.
ProDOS 8 tests for a 65C02 by setting binary-coded decimal (BCD) mode and
adding $01 to $99, which is the largest negative BCD value representable in an 8-bit
register. 65C02 microprocessors correctly clear the N flag when the addition wraps
to zero; 6502 microprocessors do not.

Since all of Apple’s 65C02 or greater computers also have lower-case capability, the
ProDOS 8 splash screen now uses lower-case letters. After only nine years, too.

• The file’s been rearranged again, so if you have a program that patches the P8 file, it
probably breaks now. Please learn your lesson and write a .SYSTEM program that
patches ProDOS 8 in memory and not on disk.

• The prefix is now set correctly when launching Applesoft programs.

• Old never-used code to handle call $42 is now gone.

• Removed some RAM-disk code that was not used.

• ProDOS 8 now sets the prefix to empty when you try to set the prefix to “/”.

• The Apple IIGS clock driver inside ProDOS 8 now limits the year to the range 00
through 99.

• Sparse seedling files are now truncated properly.

• When filling up a volume with a WRITE call, ProDOS 8 used to return the disk full
error but leave the file’s mark set past the file’s EOF. This is now fixed.

Developer Technical Support May 1992

ProDOS 8
#23: ProDOS 8 Changes and Minutia 7 of 7

• If you try to mount a new volume but all eight VCB slots are filled, ProDOS 8 now
tries to kick out the first volume in the table with no open files. If all volumes have
open files, you’ll still get error $55.

• The new quit code (introduced with 1.9) now beeps and lets the user try another
subdirectory if the one they chose can’t be opened. Previously it went forward to
the next volume.

• The new quit code also now closes a directory if it gets a ProDOS error in the
directory read loop.

• When synthesizing a directory entry for a volume, ProDOS 8 always used to
assume the directory was four blocks long (for 51 files). The /RAM disk’s
directory is shorter than this (one block), and ProDOS 8 no longer returns funky
errors when trying to read past the end of this shortened directory. The EOF and
blocks used are now returned as $200 and 1, respectively.

• The system death messages are now displayed in the center of the 40-column
screen, bordered by inverse spaces. This is an improvement over the line of garbage
showing at the bottom of the screen since approximately version 1.5.

• The new quit code was rearranged to clear the screen prior to loading the selected
application. This insures that MSLOT ($07F8) points to the “boot” slot prior to
starting the application. In this way, you can launch the ProDOS file from GS/OS
to start up GS/OS. (Note that MSLOT must be set properly for this to work.)

• If the device search code at start time finds a SCSI SmartPort, a SmartPort status
call is issued to device #2. This lets the Apple II High-Speed SCSI card build its
device tables and return the true number of devices connected. Without this, it
always returns “4” for slot 5 or “2” for any other slot.

• KVERSION is now $21.

Known ProDOS 8 v2.0.1 bugs

• ProDOS 8 still doesn’t behave perfectly when 14 or more devices are present.
Specifically, the /RAM driver tends to install itself without checking to see whether
or not there’s room in the device table.

Caution: ProDOS 8’s remapping of SmartPort devices may interfere with intelligent
SmartPort peripherals that were already doing their own remapping.
ProDOS 8 remaps additional SmartPort devices, even if the SmartPort
firmware already did this on its own, and this can cause problems. We never
said this would work, but we never said it wouldn’t—ProDOS 8 has no way
to determine what remapping has already been done. If you make such a
card and your customers have problems, tell them to disable your SmartPort
remapping and let ProDOS 8 do it all.

Further Reference
• ProDOS 8 Technical Reference Manual
• ProDOS 8 Update
• AppleShare Programmer’s Guide to the Apple II
• ProDOS 8 Technical Note #21, Identifying ProDOS Devices

ProDOS 8
#24: BASIC.SYSTEM Revisions 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

ProDOS 8
#24: BASIC.SYSTEM Revisions
Revised by: Matt Deatherage May 1992
Written by: Matt Deatherage July 1989

This Technical Note documents the change history of BASIC.SYSTEM through V1.5, which ships
with Apple IIGS System Software 6.0. V1.0, the initial release, is not documented in this Note, and
V1.1 is described in BASIC Programming with ProDOS.
Changes since September 1990: Revised to include BASIC.SYSTEM 1.5.

V1.1

• Fixed a bug in variable packing (used by CHAIN, STORE, and RESTORE).
• Changed the interpreter to use the ProDOS startup convention of a JMP instruction

followed by two $EE bytes and a startup pathname buffer.
• Removed a bad buffer address in the FIELD parameter of the READ routine.
• Fixed a bug in APPEND so calls to OPEN and READ from a random-access file

would not cause the next call to APPEND to any file to use the record length of the
random-access file.

• Added the BYE command to allow ProDOS QUIT calls from BASIC.
• Removed the limited support for run-time capabilities which had been present.

V1.2

• Changed the CATALOG command to ignore the number of entries in a directory
when listing it so AppleShare volumes could be cataloged properly (this number can
change on the fly on an AppleShare volume).

• Fixed another bug in CATALOG so pressing an unexpected key when a catalog
listing was paused with a Control-S would no longer abort the catalog.

V1.3

• Changed BSAVE so it now truncates the length of the saved file when the B
parameter is not used. To replace the first part of a file without truncation, use the B
parameter with a value of zero. This behavior with the B parameter is how V1.1 and
V1.2 worked without the B parameter.

• Fixed a bug in CHAIN and STORE where they expected one branch to go two ways
at the same time.

• Added the MTR command for easier access to the Monitor from BASIC.
• Made internal changes to the assembly process for easier project management.

These changes do not affect the code image.

Apple II Technical Notes

ProDOS 8
2 of 2 #24: BASIC.SYSTEM Revisions

V1.4

• Fixed a bug which caused a BLOAD into an address marked as used in the global
page to start performing a BSAVE on the file instead of returning the NO BUFFERS
AVAILABLE message. For this reason, BASIC.SYSTEM version 1.3 should not
be used.

V1.4.1

• Fixed a bug in the mark handling routines. When using the “B” parameter to
indicate a byte to use as a file mark, the third and most significant byte would never
be reset before the next use of B. For example, if you used a B value of $010000
and then used a B value of $2345, BASIC.SYSTEM 1.4 would use $012345 for the
second B parameter value.

V1.5

• Fixed centuries-old bug where NOTRACE after a THEN (as in IF/THEN)
disconnected BASIC.SYSTEM. Now it doesn’t.

• BSAVE now modifies the auxtype of an existing file only if the file type is $06
(BIN).

• BASIC.SYSTEM can now launch (with “–”) GS/OS applications. Files of type
$B3 are passed through to an extended QUIT call to the ProDOS 8 MLI.

• $B3 files are now listed as S16 in the catalog.
• Fixed a bug in the READ command where reading from the slot 3 /RAM disk passed

errors back to BASIC, making the program break without completing a legal
operation.

• Code optimized and crunched slightly.

Further Reference
• BASIC Programming with ProDOS
• ProDOS 8 Technical Reference Manual

ProDOS 8
#25: Non-Standard Storage Types 1 of 4

Apple II
Technical Notes

Developer Technical Support

®

ProDOS 8
#25: Non-Standard Storage Types

Revised by: Matt Deatherage December 1991
Written by: Matt Deatherage July 1989

This Technical Note discusses storage types for ProDOS files which are not documented in the
ProDOS 8 Technical Reference Manual.

Warning: The information provided in this Note is for the use of disk utility
programs which occasionally must manipulate non-standard files in
unusual situations. ProDOS 8 programs should not create or otherwise
manipulate files with non-standard storage types.

Changes since July 1989: Included new information on storing HFS Finder information in
extended files’ extended key blocks.

Introduction

One of the features of the ProDOS file system is its ability to let ProDOS 8 know when someone
has put a file on the disk that ProDOS 8 can’t access. A file not created by ProDOS 8 can be
identified by the storage_type field. ProDOS 8 creates four different storage types:
seedling files ($1), sapling files ($2), tree files ($3), and directory files ($D). ProDOS 8 also
stores subdirectory headers as storage type $E and volume directory headers as storage type $F.
These are all described in the ProDOS 8 Technical Reference Manual.

Other files may be placed on the disk, and ProDOS 8 can catalog them, rename them, and return
file information about them. However, since it does not know how the information in the files is
stored on the disk, it cannot perform normal file operations on these files, and it returns the
Unsupported Storage Type error instead.

Apple reserves the right to define additional storage types for the extension of the ProDOS file
system in the future. To date, two additional storage types have been defined. Storage type $4
indicates a Pascal area on a ProFile hard disk, and storage type $5 indicates a GS/OS extended
file (data fork and resource fork) as created by the ProDOS FST.

Apple II Technical Notes

ProDOS 8
2 of 4 #25: Non-Standard Storage Types

Storage Type $4

Storage type $4 is used for Apple II Pascal areas on Profile hard disk drives. These files are
created by the Apple Pascal ProFile Manager. Other programs should not create these files, as
Apple II Pascal could freak out.

The Pascal Profile Manager (PPM) creates files which are internally divided into pseudo-
volumes by Apple II Pascal. The files have the name PASCAL.AREA (name length of 10), with
file type $EF. The key_pointer field of the directory entry points to the first block used by
the file, which is the second to last block on the disk. As ProDOS stores files non-contiguously
up from the bottom, PPM creates pseudo-volumes contiguously down from the end of the
ProFile. Blocks_used is 2, and header_pointer is also 2. All other fields in the
directory are set to 0. PPM looks for this entry (starting with the name PASCAL.AREA) to
determine if a ProFile has been initialized for Pascal use.

The file entry for the Pascal area increments the number of files in the ProDOS directory and the
key_pointer for the file points to TOTAL_BLOCKS - 2, or the second to last block on the
disk. When PPM expands or contracts the Pascal area, blocks_used and key_pointer are
updated accordingly. With any access to this entry (such as adding or deleting pseudo-volumes
within PPM), the backup bit is not set (PPM provides a utility to back up the Pascal area).

The Pascal volume directory contains two separate contiguous data structures that specify the
contents of the Pascal area on the Profile. The volume directory occupies two blocks to support
31 pseudo-volumes. It is found at the physical block specified in the ProDOS volume directory
as the value of key_pointer (i.e., it occupies the first block in the area pointed to by this
value).

The first portion of the volume directory is the actual directory for the pseudo-volumes. It is an
array with the following Apple II Pascal declaration:

TYPE RTYPE = (HEADER, REGULAR)

VAR VDIR: ARRAY [0..31] OF
PACKED RECORD

CASE RTYPE OF
HEADER: (PSEUDO_DEVICE_LENGTH:INTEGER;

CUR_NUM_VOLS:INTEGER;
PPM_NAME:STRING[3]);

REGULAR: (START:INTEGER;
DEFAULT_UNIT:0.255
FILLER:0..127
WP:BOOLEAN
OLDDRIVERADDR:INTEGER

END;

The HEADER specifies information about the Pascal area. It specifies the size in blocks in
PSEUDO_DEVICE_LENGTH, the number of currently allocated volumes in CUR_NUM_VOLS,
and a special validity check in PPM_NAME, which is the three-character string PPM. The header
information is accessed via a reference to VDIR[0]. The REGULAR entry specifies information
for each pseudo-volume. START is the starting block address for the pseudo-volume, and
LENGTH is the length of the pseudo-volume in blocks. DEFAULT_UNIT specifies the default

Developer Technical Support December 1991

ProDOS 8
#25: Non-Standard Storage Types 3 of 4

Pascal unit number that this pseudo-volume should be assigned to upon booting the system. This
value is set through the Volume Manager by either the user or an application program, and it
remains valid if it is not released.

If the system is shut down, the pseudo-volume remains assigned and will be active once the
system is rebooted. WP is a Boolean that specifies if the pseudo-volume is write-protected.
OLDDRIVERADDR holds the address of this unit’s (if assigned) previous driver address. It is
used when normal floppy unit numbers are assigned to pseudo-volumes, so when released, the
floppies can be reactivated. Each REGULAR entry is accessed via an index from 1 to 31. This
index value is thus associated with a pseudo-volume. All references to pseudo-volumes in the
Volume Manager are made with these indexes.

Immediately following the VDIR array is an array of description fields for each pseudo-volume:

VDESC: ARRAY [0..31] OF STRING[15]

The description field is used to differentiate pseudo-volumes with the same name. It is set when
the pseudo-volume is created. This array is accessed with the same index as VDIR.

The volume directory does not maintain the names of the pseudo-volumes. These are found in
the directories in each pseudo-volume. When the Volume Manager is activated, it reads each
pseudo-volume directory to construct an array of the pseudo-volume names:

VNAMES: ARRAY [0..31] OF STRING[7]

Each pseudo-volume name is stored here so the Volume Manager can use it in its display of
pseudo-volumes. The name is set when the pseudo-volume is created and can be changed by the
Pascal Filer. The names in this array are accessed via the same index as VDIR. This array is set
up when the Volume Manager is initialized and after there is a delete of a pseudo-volume.
Creating a pseudo-volume will add to the array at the end.

Pascal Pseudo-Volume Format

Each Pascal pseudo-volume is a standard UCSD formatted volume. Blocks 0 and 1 are reserved
for bootstrap loaders (which are irrelevant for pseudo-volumes). The directory for the volume is
in blocks 2 through 5 of the pseudo-volume. When a pseudo-volume is created, the directory for
that pseudo-volume is initialized with the following values:

dfirstblock = 0 first logical block of the volume
dlastblock = 6 first available block after the directory
dvid = name of the volume used in create
deovblk = size of volume specified in create
dnumfiles = 0 no files yet
dloadtime = set to current system date
dlastboot = 0

The Apple II Pascal 1.3 Manual contains the format for the UCSD directory. Files within this
subdirectory are allocated via the standard Pascal I/O routines in a contiguous manner.

Apple II Technical Notes

ProDOS 8
4 of 4 #25: Non-Standard Storage Types

Developer Technical Support December 1991

ProDOS 8
#25: Non-Standard Storage Types 5 of 4

Storage Type $5

Storage type $5 is used by the ProDOS FST in GS/OS to store extended files. The key block of
the file points to an extended key block entry. The extended key block entry contains mini-
directory entries for both the data fork and resource fork of the file. The mini-entry for the data
fork is at offset +000 of the extended key block, and the mini-entry for the resource fork is at
offset +$100 (+256 decimal).

The format for mini-entries is as follows:

storage_type (+000) Byte The standard ProDOS storage type for this fork of the
file. Note that for regular directory entries, the
storage type is the high nibble of a byte that contains
the length of the filename as the low nibble. In mini-
entries, the high nibble is reserved and must be zero,
and the storage type is contained in the low nibble.

key_block (+001) Word The block number of the key block of this fork. This
value and the value of storage_type combine to
determine how to find the data in the file, as
documented in the ProDOS 8 Technical Reference
Manual.

blocks_used (+003) Word The number of blocks used by this fork of the file.
EOF (+005) 3 Bytes Three-byte value (least significant byte stored first)

representing the end-of-file value for this fork of the
file.

Immediately following the mini-entry for the data fork may be up to two eighteen-byte entries,
each with part of the HFS Finder information for this file. The first entry stores the first 16 bytes
of the Finder information, and the second entry stores the second 16 bytes. The format is as
follows:

entry_size (+008) Byte Size of this entry; must be 18 ($12).
entry_type (+009) Byte Type of this entry—1 for FInfo (first 16 bytes of

Finder information), 2 for xFInfo (second 16 bytes).
FInfo (+010) 16 Bytes First sixteen bytes of Finder Info.
entry_size (+026) Byte Size of this entry; must be 18 ($12).
entry_type (+027) Byte Type of this entry—1 for FInfo (first 16 bytes of

Finder information), 2 for xFInfo (second 16 bytes).
xFInfo (+028) 16 Bytes Second sixteen bytes of Finder Info.

Note: Although the ProDOS FST under GS/OS will only create both of the mini-entries,
as described above, the ProDOS File System Manager (ProDOS FSM) for the
Macintosh, which is part of the Apple IIe Card v2.0 software, may create only
one of the entries, so you may find an entry_type of 2 at offset +009 in the
block. If one of the entries is missing, it should be considered to be all zeroes.

All remaining bytes in the extended key block are reserved and must be zero.

Further Reference
• Apple II Pascal ProFile Manager Manual

Apple II Technical Notes

ProDOS 8
6 of 4 #25: Non-Standard Storage Types

• GS/OS Reference
• ProDOS 8 Technical Reference Manual

ProDOS 8
#26: Polite Use of Auxiliary Memory 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

ProDOS 8
#26: Polite Use of Auxiliary Memory

Written by: Matt “Missed Manners” Deatherage January 1990

This Technical Note discusses the use of auxiliary memory, particularly the reserved areas, and
this information supersedes the discussion in the ProDOS 8 Technical Reference Manual.

“I want to use auxiliary memory!”

Dear Missed Manners:

I’m having difficulty in a program I’m writing for 128K Apple II computers. My program is
about to run out of memory. I have squeezed, packed and compressed this program until I can
simply cajole no more room from it, and yet more room it needs. Apple has a large section of
memory reserved, but my investigations reveal that this memory (in a language card, where it is
doubly valuable since it stays put when main memory is swapped) seems to be unused. The
ProDOS 8 Technical Reference Manual states unfailingly that the memory must not be used, but
it seems to be wasting away! How can I politely use this valuable resource in my own
application?

Gentle Developer:

Polite programming requires cooperation by both developers and system software, and it is the
users who suffer when that cooperation is not maintained. Apple reserves memory for system
software so that it can expand without breaking applications. Missed Manners hopes that he is
not being too presumptuous by assuming that you would be appalled if Apple was required to
expand ProDOS 8 and reclaim the memory from $B000 through $BFFF. He notes this situation
would not be necessary if Apple were able to use memory it currently has reserved for such
purposes.

However, if necessity requires more memory for your application, a polite inquiry to Apple may
be sent. “Would it be possible for me to use some of Apple’s reserved memory in my
application without compatibility problems?” would be a polite request, for example. Using the
memory without asking or demanding action would not only be impolite, it would pose future
problems for an application. Those who do not program politely will eventually regret such a
decision.

Apple II Technical Notes

2 of 2 #26: Polite Use of Auxiliary Memory

Conflicts and Arbitration

Some of the polite letters Apple has received on this subject point out that the built-in /RAM
device uses almost all of the memory marked as “reserved” in the ProDOS 8 memory map. How
can the system software expand into areas it’s already using?

Developer Technical Support January 1990

ProDOS 8
#26: Polite Use of Auxiliary Memory 3 of 2

It can’t, of course…unless it already has and you don’t know it. This is partially the case. On
the Apple IIGS, memory can be obtained through the Memory Manager, so adding new
components to the system software is relatively easy. If memory is available, it is allocated by
the Memory Manager and used by the application. If memory is not available, the program
trying to install the component in question is told and the component is not installed. (If a vital
part of the system can’t be installed, the boot process grinds to an unceremonious, but
grammatically correct, halt.)

Since the 8-bit Apple II family has no memory manager, applications and system software must
mutually (and politely) agree which areas of memory belong to whom. If the system software is
broken into components, some memory will be reserved for components which are not present at
a given time. This is largely the case with the auxiliary language card memory on the 128K
Apple II.

The area from $D100 through $DFFF in bank 2 of the auxiliary language card is for the use of
third-party RAM-based drivers, to be discussed in a future ProDOS 8 Technical Note. At least
one version of Apple II SANE is configured to load at $E000 in the auxiliary language card,
which is perfectly acceptable since SANE is part of the system software (it just doesn’t ship with
the system).

Clearly, /RAM can’t use this memory at the same time the system software does. This very
dichotomy gives the Rule of Auxiliary Memory that simplifies this memory management.

The Rule of Auxiliary Memory: If /RAM is enabled, all auxiliary memory
above location $800 may be used by an application after first removing /RAM as
discussed in the ProDOS 8 Technical Reference Manual. /RAM should be
reinstalled upon completion.

If /RAM is not enabled, then auxiliary memory above $800 may be used at the
application programmer’s discretion, but the areas marked as reserved must be
respected.

System software use of this area should be denoted by the absence of /RAM. This means that if
ProDOS 8 were to ever expand to run only on 128K machines and require auxiliary language
card memory, that no /RAM device would be installed by default. Although this seems unlikely,
it is nonetheless another indicator that your application should not depend on /RAM to operate.

Similarly, if /RAM is not present when your application is launched, you may not reenable it. If
it is present, you may remove it to use the memory if you reinstall it when you’re done.

Also note that auxiliary memory below $800 that is not on the 80-column text screen is always
reserved and may never be used by applications.

Applications which use reserved memory areas without observing this rule run the risk of storing
data over third-party RAM-based drivers (rendering their software useless to peripherals that
may require such drivers, like third-party networks, devices for the visually impaired, or closed-
system hard disks) or future system software.

Apple II Technical Notes

4 of 2 #26: Polite Use of Auxiliary Memory

Further Reference
• ProDOS 8 Technical Reference Manual

ProDOS 8
#27: Hybrid Applications 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

ProDOS 8
#27: Hybrid Applications

Written by: Matt Deatherage March 1990

This Technical Note discusses considerations for “hybrid” applications, which use Apple IIGS-
specific features from ProDOS 8.

Why Use Hybrid Features?

There are many reasons not to write hybrid applications. If your target machine is the Apple
IIGS, it’s pretty silly to write a ProDOS 8-based application. You are limited to the slower I/O
model of ProDOS 8, you cannot access foreign file systems or large CD-ROM volumes, you
cannot reliably access the toolbox (patches to the toolbox are only loaded when GS/OS is booted,
which forces you to require GS/OS to be booted), and you cannot work with desk accessories
that do disk access (CDAs cannot reliably “save and restore” an area of bank zero to use for
ProDOS 8 disk access because they don’t know if an interrupt handling routine is located there).

However, applications targeted for all Apple II computers may reasonably wish to take
advantage of IIGS features. For example, a word processor or telecommunications program may
want to use extra IIGS memory. This Note is your spiritual guide to such features.

Memory Management

Applications wishing to use extended (beyond the lower 128K) memory on the IIGS must, like
all IIGS applications, get it from the Memory Manager. This is not a consideration for non-
hybrid applications for two reasons. First, when GS/OS launches a ProDOS 8 program, it
reserves all of the lower 128K memory for ProDOS 8, so no other component (tool, desk
accessory, INIT) can accidentally use that memory. (In fact, if some of the memory is not
available, GS/OS refuses to launch ProDOS 8 at all.) Second, when ProDOS 8 is directly
booted, none of the memory is allocated since these other components, which might be using the
Memory Manager, aren’t loaded either.

If your ProDOS 8 application was launched by GS/OS, all of the managed lower 128K has
already been allocated for you by GS/OS. If you call MMStartUp, the user ID returned is one
belonging to GS/OS. In such cases, the auxiliary field of the user ID is already being used by
GS/OS and must not be altered by your application. You also must not call any Memory
Manager routine which works on all handles of a given user ID, such as DisposeAll or

Apple II Technical Notes

ProDOS 8
2 of 2 #27: Hybrid Applications

HUnlockAll. You must manage all handles individually and not by user ID. You may, if you
wish, call GetNewID to get a new user ID for use in a user ID-based memory management
system. The ID should be of type $1000 (application).

You can tell whether your application was launched by GS/OS by checking OS_BOOT, the byte
value at $E100BD. OS_BOOT is $00 when the boot OS was ProDOS 8, indicating that your
application was not loaded by GS/OS. If this is the case and you want to use extended IIGS

memory, you should call GetNewID to obtain a new application ID then use NewHandle to
allocate four handles to hold the memory normally reserved for ProDOS 8 by GS/OS. You
should obtain memory at $00/0800 (size $B800), $01/0800 (size $B800), $E0/2000 (size $4000)
and $E1/2000 (size $8000). You may then use MMStartUp to register yourself with the
Memory Manager; MMStartUp fails if it’s being called from an unallocated memory block, so
you must allocate the memory your application occupies first.

Further Reference
• Apple IIGS Technical Note #17, Application Startup and the MMStartUp User ID

ProDOS 8
#28: ProDOS Dates—2000 and Beyond 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

ProDOS 8
#28: ProDOS Dates—2000 and Beyond

Written by: Dave Lyons September 1990

This Technical Note explains how ProDOS year values range from zero to ninety-nine and
represent the years 1940 through 2039.

The ProDOS date format uses sixteen bits: seven bits for the year, four for the month, and five
for the day (see the ProDOS 8 Technical Reference Manual, page 71). Dates are represented in
this format in the parameter blocks for ProDOS 8 MLI calls and in the directories of ProDOS
volumes.

In seven bits, 128 different years could be represented, but the proper interpretation of those bits
has never been defined clearly until now.

2000? I’ll Be Dead By Then Anyway

It’s only nine years, folks, and then things get weird. Is that ProDOS year 100 or ProDOS year
0? How do you compare two file-modification dates so it keeps working correctly?

Before you dismiss questions like this, consider just how sure you are that nobody will be using
your software in nine years, or whether those few dedicated weirdos are going to call you up on
January 1, 2000 to complain. There will be plenty of computer-related problems in 2000, so
write your applications right today.

Some Choices

These two possible interpretations were considered and then rejected in favor of The Definition
below.

1. Valid years would be from 0 to 99, meaning 1900 to 1999, so ProDOS dates would just
“expire” at the end of 1999. No fun.

2. Valid years would be from 0 to 127, meaning 1900 to 2027. This is a little better, except
that almost no existing software is prepared to deal with year values outside the 0-to-99
range.

Apple II Technical Notes

ProDOS 8
2 of 2 #28: ProDOS Dates—2000 and Beyond

So, you are left with...

Developer Technical Support September 1990

ProDOS 8
#28: ProDOS Dates—2000 and Beyond 3 of 2

The Definition

The following definition allows the same range of years that the Apple IIGS Control Panel CDA
currently does:

• A seven-bit ProDOS year value is in the range 0 to 99
(100 through 127 are invalid)

• Year values from 40 to 99 represent 1940 through 1999
• Year values from 0 to 39 represent 2000 through 2039

Note: Apple II and Apple IIGS System Software does not currently reflect this
definition.

How to Compare Two Years

To compare two dates, you need to adjust the years to allow for the wrap-around effect between
39 and 40. A simple approach is to add 100 to any year less than 40 before doing the
comparison, thus comparing two values in the range 40 to 139.

 CompareAB lda YearB
 cmp #40
 bcs B_OK
 adc #100 ;carry is clear
 sta YearB

B_OK lda YearA
 cmp #40
 bcs A_OK
 adc #100 ;carry is clear
 sta YearA

A_OK cmp YearB
 bcc A_is_earlier
 ...

What About GS/OS Dates?

This definition affects how the GS/OS ProDOS File System Translator works internally, but it
does not affect GS/OS applications. A year value under GS/OS is always a byte offset from
1900, giving a possible range of 1900 to 2155, regardless of the file system involved.

What Do You Do After 2039?

Apple is still working on it. Contact your neighborhood Apple Developer Technical Support
office in 2030.

Further Reference

Apple II Technical Notes

ProDOS 8
4 of 2 #28: ProDOS Dates—2000 and Beyond

• ProDOS 8 Technical Reference Manual
• Apple IIGS Toolbox Reference Manual, Volume 1
• GS/OS Reference

ProDOS 8
#29: Clearing the Backup Needed Bit 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

ProDOS 8
#29: Clearing the Backup Needed Bit

Written by: Jim Luther September 1990

This Technical Note shows how to clear the “backup needed bit” in a directory entry’s access
byte.

If you are writing a file backup utility program, you probably want to clear the backup needed bit
in each directory entry’s access byte as you make the backup of the file associated with that
directory entry. The SET_FILE_INFO MLI call normally sets the backup needed bit of the
access byte, but how do you clear it? The answer is at location BUBIT ($BF95) on the
ProDOS 8 system global page.

BUBIT normally contains the value $00. When BUBIT contains $00, the SET_FILE_INFO
MLI call always sets the backup needed bit in the directory entry’s access byte. However, if
the value $20 is stored in BUBIT immediately before calling SET_FILE_INFO, the backup
needed bit in the directory entry’s access byte can be cleared. BUBIT is set back to $00 by the
MLI call. The following code example shows how to clear the backup needed bit. Values other
than $20 or $00 in BUBIT are not supported.

; The pathname of the file should be in ThePathname buffer when this code is called!

 65816 off
 longa off
 longi off

ClearBackupBit start

; System global page locations

MLI equ $BF00 ;MLI call entry point
BUBIT equ $BF95 ;Backup Bit Disable, SET_FILE_INFO only

; MLI call numbers

SET_FILE_INFO equ $C3
GET_FILE_INFO equ $C4

; set up FileInfoParms for GET_FILE_INFO MLI call
 lda #$0A
 sta param_count
; then...
 jsr MLI ;get the current file info
 dc I1'GET_FILE_INFO'
 dc I2'FileInfoParms'
 bne Error

Apple II Technical Notes

ProDOS 8
2 of 2 #29: Clearing the Backup Needed Bit

 lda #$20 ;set the backup bit disable bit
 sta BUBIT
 eor #$FF
 and access ;clear the backup needed bit
 sta access

; set up FileInfoParms for SET_FILE_INFO MLI call
 lda #$07
 sta param_count
; then...
 jsr MLI ;set the file info with the file info
 dc I1'SET_FILE_INFO' ;(clearing only the backup needed bit)
 dc I2'FileInfoParms'
 bne Error
 rts ;return to caller

Error anop ;routine to handle MLI errors
 rts

; Parameter block used for GET_FILE_INFO and SET_FILE_INFO MLI calls

FileInfoParms anop
param_count ds 1
pathname dc i2'ThePathname'
access ds 1
file_type ds 1
aux_type ds 2
storage_type ds 1
blocks_used ds 2
mod_date ds 2
mod_time ds 2
create_date ds 2
create_time ds 2

ThePathname entry
 ds 65 ;store the pathname of the file here

 end

Further Reference
• ProDOS 8 Technical Reference Manual

ProDOS 8
#30: Sparse Station 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

ProDOS 8
#30: Sparse Station
Written by: Matt Deatherage May 1992

This Technical Note discusses issues when using sparse files under ProDOS 8.

Sparse Information Available

The concept of sparse files is introduced in the ProDOS 8 Technical Reference Manual in
sometimes confusing language. The concept behind sparse files is pretty simple. If you didn’t
think it could be explained in two paragraphs, have a seat and learn something.

The ProDOS file system keeps track of where files reside on disk through a series of “index
blocks.” All index blocks are disk blocks that contain lists of block numbers. They may be
organized in several ways (seedling, sapling or tree), depending on how big the file is—one 512-
byte block can hold 256 two-byte block numbers. If a file is one block long, it has no index blocks
and is a seedling file. If a non-sparse file is between two and 256 blocks long, it has one index
block and is a sapling file. If a non-sparse file is longer than 256 blocks, it’s a tree file and has a
“master index block” that points to other index blocks. This is more than enough to store any
ProDOS file—one master index block pointing to 256 other index blocks, each of which points to
256 data blocks on disk would be a 32 MB file—twice the limit of 16 MB imposed by ProDOS’s
3-byte storage for file lengths.

What happens if you don’t need to use all of those blocks? For example, if you need to store data
at file offset $0000 and at file offset $20000, does ProDOS make you waste 256 disk blocks
you’re not going to use? Fortunately, the answer is “no.” ProDOS lets you skip any data block
you’re not using by recording a pointer to data block $0000 instead of to a regular block on the
disk. When ProDOS sees a block pointer of $0000 in an index block, it knows not to read block
zero (which contains boot code) but instead to pretend that it read a block of zeroes from the disk.
This lets you save lots of space on disk—a file created this way is a sparse file. (See? Two
paragraphs.)

Under ProDOS 8, you can create a sparse file by using the SET_EOF MLI command to extend the
file’s current end-of-file position, and then using SET_MARK to move the mark to the new end-of-
file position. If you grow a file by increasing the EOF but not actually writing data, ProDOS 8
makes the blocks you skip sparse. Under GS/OS, the ProDOS FST automatically converts long
stretches of zeroes to sparse blocks, making sparse files even more prevalent.

Apple II Technical Notes

2 of 3 #30: Sparse Station

Dealing With Sparsity

Unfortunately, ProDOS 8 does not automatically make sparse files when you write large sections
of zeroes. That means if you read a sparse file and write it back out, you “expand” it and it’s no
longer sparse. The file could balloon to hundreds of times its previous disk space, which is not a
good thing.

So how do you recognize a sparse file? You can notice that the length of the file has to be pretty
close to 512 bytes multiplied by the number of blocks allocated to data in the file. For example,
take a file that’s $4068 bytes long. $4068 bytes takes 33 512-byte blocks—32 blocks is $4000
bytes, plus one more block for the last $68 bytes. This is between 2 and 256 blocks, so there’s one
more block allocated for the index block. If this file is not sparse, it uses 34 blocks on disk. If it
uses any less than 34 blocks in reality, it’s sparse.

This calculation gets a little tricker for tree files—if the file has more than 256 data blocks, add one
master index block plus one index block for each 256 data blocks or portion thereof. To give
another example, a file that’s $68D3F bytes long takes 839 ($347) data blocks. This file has five
additional blocks allocated to it—one master index block and four index blocks. The first three
index blocks are full (256 3 = 768) and the fourth contains the remaining 71 data blocks. If this
file takes less than 844 blocks on disk, it’s sparse.

Too Complicated?

For all except very speedy utilities to copy files, yes. If you just need an easy way to deal with
sparse files that’s not so speed-critical, read on.

All you have to do to preserve (or create) sparsity in normal file copying operations is scan the data
you’ve read from disk before you write it back. Suppose your file copying buffer is 10K large.
Read 10K of data from your source file, then divide the buffer into 512-byte chunks and scan the
data looking for zeroes. If you find a non-zero byte, write the entire 512-byte chunk of data to the
target file and proceed to the next 512-byte chunk. If you don’t find any non-zero bytes in a 512-
byte chunk, just set the mark ahead 512 bytes and don’t issue a WRITE call. This is basically how
GS/OS’s ProDOS FST automatically sparses files, and it can work for you too.

Is It That Easy?

Well, no. There’s an important exception—AppleShare.

Most AppleShare servers (including all of Apple’s) don’t support sparse files—all the logical
blocks you use have to be physically allocated on the server’s hard disk. The following
BASIC.SYSTEM command:

BSAVE SPARSE.FILE,A$300,L$1,B$FFFFFF

creates a 16 MB sparse file with one byte of logical data in it. This file only takes 5 blocks on a
ProDOS disk (one master index block, two index blocks and two data blocks—it takes two data
blocks because ProDOS 8 always allocates the very first block of a file when you create it, even if
you don’t use the first 512 bytes), but it takes 16 MB of disk space on a server.

That’s not all—for speed reasons, AppleShare does not fill the extra, normally-sparsed blocks with
zeroes. If you issued the above command to an AppleShare server under ProDOS 8 and then tried
to read the first few bytes of the resulting file, they would be garbage—but not zeroes.

Developer Technical Support May 1992

ProDOS 8
#30: Sparse Station 3 of 3

ProDOS 8 Technical Note #21 gives information on identifying AppleShare server volumes—if
you’re dealing with one, do not use normal sparse file creation techniques. Just write the 512 bytes
of zeroes instead of advancing the mark. It doesn’t take any more disk space and it achieves the
results you want.

One More Thing

In versions of ProDOS 8 up to 1.9, setting the end-of-file position past $200 on a seedling file
created a sparse file that confused ProDOS 8 if you ever used SET_EOF on it again. This is fixed
in version 2.0.1 and later.

Further Reference
• ProDOS 8 Technical Reference Manual

	01. The GETLN Buffer & a ProDOS Clock Card
	02. Porting DOS 3.3 Programs to ProDOS & BASIC.SYSTEM
	03. Device Search, Identification & Driver Conventions
	04. I/O Redirection in DOS & ProDOS
	05. ProDOS Block Device Formatting
	06. Attaching External Commands to BASIC.SYSTEM
	07. Starting & Quitting Interpreter Conventions
	08. Dealing with /RAM
	09. Buffer Management Using BASIC.SYSTEM
	10. Installing Clock Driver Routines
	11. The ProDOS 8 MACHID Byte
	12. Interrupt Handling
	13. Double High-Resolution Grraphics Files
	14. Selector & Dispatcher Conventions
	15. How ProDOS 8 Treats Slot 3
	16. How to Format a ProDOS Disk Device
	17. Recursive ProDOS Catalog Routine
	18. /RAM Memory Map
	19. File Auxillary Type Assignment
	20. Mirrored Devices & SmartPort
	21. Identifying ProDOS Devices
	22. Don't Put Parameter Blocks on Zero Page
	23. ProDOS 8 Changes & Minutia
	24. BASIC.SYSTEM Revisions
	25. Non-Standard Storage Types
	26. Polite Use of Auxiliary Memory
	27. Hybrid Applications
	28. ProDOS Dates - 2000 & Beyond
	29. Clearing the Backup Needed Bit
	30. Sparse Station

